版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
臨汾市重點中學2025屆高三5月質量檢測試題(A卷)數(shù)學試題文試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.22.已知等式成立,則()A.0 B.5 C.7 D.133.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.4.已知為虛數(shù)單位,若復數(shù)滿足,則()A. B. C. D.5.記遞增數(shù)列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數(shù)列中的項,則()A. B.C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.7.已知集合,將集合的所有元素從小到大一次排列構成一個新數(shù)列,則()A.1194 B.1695 C.311 D.10958.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.199.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數(shù)的解析式為()A. B.C. D.10.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg11.函數(shù)()的圖像可以是()A. B.C. D.12.在條件下,目標函數(shù)的最大值為40,則的最小值是()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與的夾角為,||=||=1,且⊥(λ),則實數(shù)_____.14.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.15.在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)16.已知△的三個內角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)18.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.19.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.20.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.21.(12分)為了解網(wǎng)絡外賣的發(fā)展情況,某調查機構從全國各城市中抽取了100個相同等級地城市,分別調查了甲乙兩家網(wǎng)絡外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展營銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展營銷活動將比不開展營銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.22.(10分)已知函數(shù),其中.(Ⅰ)當時,求函數(shù)的單調區(qū)間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B利用的關系求雙曲線的離心率,是基礎題.2.D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.3.C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.4.A【解析】分析:題設中復數(shù)滿足的等式可以化為,利用復數(shù)的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數(shù)的四則運算和復數(shù)概念中的共軛復數(shù),屬于基礎題.5.D【解析】
由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項,或者或者是該數(shù)列中的項,又數(shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項,同理可以得到,,,也是該數(shù)列中的項,且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.本題考查數(shù)列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.6.A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.7.D【解析】
確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎.解題關鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.8.B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.本題考查與遞推數(shù)列相關的方程的整數(shù)解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數(shù)列相關的方程,本題屬于難題.9.A【解析】
先求出平移后的函數(shù)解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.本題主要考查三角函數(shù)的圖像變換及性質.平移圖像時需注意x的系數(shù)和平移量之間的關系.10.D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.11.B【解析】
根據(jù),可排除,然后采用導數(shù),判斷原函數(shù)的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調遞減在單調遞增,故選:B本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.12.B【解析】
畫出可行域和目標函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數(shù),根據(jù)圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學生的綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)條件即可得出,由即可得出,進行數(shù)量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.考查向量數(shù)量積的運算及計算公式,以及向量垂直的充要條件.14.答案不唯一,如【解析】
根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設,則在都成立,但是在是單調遞增的,在是單調遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.本題考查對基本初等函數(shù)的圖像和性質的理解,關鍵是假設出一個在上不是單調遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎題.15.【解析】
首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質進行分類;二是按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).16.【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構造函數(shù),利用導數(shù),研究函數(shù)性質,可得結果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當且僅當時,取等號又,所以令,則當,即時,當,即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導數(shù)的綜合應用,難點在于根據(jù)余弦定理以及不等式求出,考驗分析能力以及邏輯思維能力,屬難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)填表見解析;有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計算出期望與方差.【詳解】(1)分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數(shù)為,則,故,.本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學期望與方差的計算問題,屬于基礎題.18.(1)不是,見解析(2)(3)【解析】
(1)利用遞推關系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當時,①②兩式對應任意恒成立,所以數(shù)列的通項公式為.本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.19.(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標準方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入得,由直線參數(shù)方程的幾何意義可知,.20.(1)(1)不存在,理由見解析【解析】
(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯(lián)立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立得,設,則,,,即.設,則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于較難題.21.(1)見解析,有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.(2)①4.911②100萬元.【解析】
(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計算的觀測值,即可結合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結合正態(tài)分布曲線性質可求得,再由二項分布的數(shù)學期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質可確定各組抽取樣本數(shù).分別計算出開展營銷活動與不開展營銷活動的利潤,比較即可得解.【詳解】(1)對于外賣甲:月訂單不低于13萬件的城市數(shù)量為,對于外賣乙:月訂單不低于13萬件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績突出城市業(yè)績不突出城市總計外賣甲4060100外賣乙524
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貓咪寵物合同范例
- 監(jiān)理施工合同范例2014
- 私人買賣煤炭合同范例
- 商標許可備案合同范例
- 涂料工程范例合同范例
- 簽訂固定總價合同范例
- 簡易鋼筋工合同范例
- 工廠產(chǎn)品裝卸合同范例
- 賓館水暖維修合同范例
- 板材拿貨合作合同范例
- 蘇教版七年級歷史知識點
- 陜西省既有村鎮(zhèn)住宅抗震加固技術規(guī)程
- 智聯(lián)國企行測筆試真題
- 2025屆新高考物理熱點精準復習:高中物理6大模塊計算題思路總結
- 2024-2030年中國光電共封裝(CPO)行業(yè)投融資趨勢及發(fā)展前景分析研究報告
- 2025屆江蘇省期無錫市天一實驗學校數(shù)學七年級第一學期期末達標檢測試題含解析
- 城市軌道交通運營管理【共30張課件】
- 學生退學情況說明
- 鋼結構設計智慧樹知到期末考試答案章節(jié)答案2024年山東建筑大學
- DB5334 T 12.5-2024《地理標志證明商標 香格里拉藏香豬》的第5部分疾病防治
- 化學機械漿與半化學機械漿
評論
0/150
提交評論