版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆新疆烏魯木齊市十中高三第一輪復(fù)習質(zhì)量檢測試題數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.2.已知的面積是,,,則()A.5 B.或1 C.5或1 D.3.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為()A. B. C. D.4.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.5.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.6.關(guān)于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④7.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.8.已知函數(shù),則不等式的解集為()A. B. C. D.9.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)10.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.11.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知復(fù)數(shù),滿足,則()A.1 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.若展開式中的常數(shù)項為240,則實數(shù)的值為________.14.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.15.如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,,則雙曲線的離心率是______.16.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結(jié)論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.18.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.19.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.20.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.22.(10分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設(shè)直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設(shè)M、N是曲線C上的兩點,若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.2.B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.3.D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.4.D【解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.5.A【解析】
由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.6.C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.7.D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關(guān)的問題,本題屬于基礎(chǔ)題.8.D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學生對這些知識的理解掌握水平.9.C【解析】
由奇函數(shù)的性質(zhì)可得,進而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.10.A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關(guān)的幾何概型.11.C【解析】
化簡得到,得到答案.【詳解】,故,對應(yīng)點在第三象限.故選:.本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學生的計算能力.12.A【解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-3【解析】
依題意可得二項式展開式的常數(shù)項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數(shù)項為,∴解得.故答案為:本題考查二項式展開式中常數(shù)項的計算,屬于基礎(chǔ)題.14.【解析】
討論裝球盒子的個數(shù),計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.本題考查了排列組合的綜合應(yīng)用,意在考查學生的理解能力和應(yīng)用能力.15.【解析】
根據(jù)三角形中位線證得,結(jié)合判斷出垂直平分,由此求得的值,結(jié)合求得的值.【詳解】∵,∴為中點,,∵,∴垂直平分,∴,即,∴,,即.故答案為:本小題主要考查雙曲線離心率的求法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎(chǔ)題.16.①②③【解析】
①點在平面內(nèi)的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(2)【解析】
(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因為成等差數(shù)列,所以而,.18.(1);(2).【解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.19.(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】
(1)①求導(dǎo)可得,再分別求解與的解集,結(jié)合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結(jié)論,求出的表達式,再分與兩種情況,結(jié)合函數(shù)的單調(diào)性分析的范圍即可.(2)求導(dǎo)分析的單調(diào)性,再結(jié)合單調(diào)性,設(shè)去絕對值化簡可得,再構(gòu)造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因為,故,,由知在上單調(diào)遞增,,若由可得x1,因為,所以,由在上單調(diào)遞增,綜上.時,,在上單調(diào)遞減,不妨設(shè)由(1)在上單調(diào)遞減,由,可得,所以,令,,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時也考查了利用導(dǎo)數(shù)求解函數(shù)不等式以及構(gòu)造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結(jié)合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.20.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過點作,與的延長線交于點,取的中點,連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因為為平行四邊形,所以,所以平面.又因為,所以平面.因為,所以平面平面.由(1),得平面,所以平面,所以.因為,所以平面,所以是與平面所成角.因為,,所以平面,平面,因為,所以平面平面.所以,,解得.在梯形中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 總經(jīng)理聘用合同簽訂與授權(quán)
- 休閑度假房產(chǎn)打印身心放松
- 商業(yè)建筑砌墻施工合同
- 農(nóng)村宅基地租賃協(xié)議模板
- 航空客服招聘合同模板
- 農(nóng)業(yè)園區(qū)機耕道修建協(xié)議
- 防噪音卷簾門安裝合同樣本
- JJJ景區(qū)餐飲店投標方案
- 服裝設(shè)計教師招聘協(xié)議
- 教育機構(gòu)加班安排細則
- 2025年北京探礦工程研究所招聘高校應(yīng)屆畢業(yè)生歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025-2030年中國新能源汽車行業(yè)市場分析報告
- 宜賓天原5萬噸氯化法鈦白粉環(huán)評報告
- 創(chuàng)意寫作與文學欣賞
- 糖果行業(yè)大數(shù)據(jù)分析-洞察分析
- 名畫中的瘟疫史知到智慧樹章節(jié)測試課后答案2024年秋上海健康醫(yī)學院
- 高空伐樹作業(yè)施工方案
- 新媒體用戶行為研究-洞察分析
- 新建二級加油站項目投資立項可行性分析報告
- 湖北省荊門市(2024年-2025年小學六年級語文)統(tǒng)編版質(zhì)量測試(上學期)試卷及答案
- 2025版國家開放大學法學本科《知識產(chǎn)權(quán)法》期末紙質(zhì)考試總題庫
評論
0/150
提交評論