版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年山東省東營市勝利油田59中學中考一模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,二次函數y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個2.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關于這組數據的描述正確的是()A.最低溫度是32℃ B.眾數是35℃ C.中位數是34℃ D.平均數是33℃3.若數a使關于x的不等式組有解且所有解都是2x+6>0的解,且使關于y的分式方程+3=有整數解,則滿足條件的所有整數a的個數是()A.5 B.4 C.3 D.24.下列代數運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x55.下列各數中,最小的數是A. B. C.0 D.6.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐7.下列調查中,調查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時間,選擇全面調查B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇全面調查C.為了解神舟飛船設備零件的質量情況,選擇抽樣調查D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調查8.如圖,已知函數與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.9.二次函數y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結論:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當x>-1時,y的值隨x值的增大而增大.其中正確的結論有()A.1個 B.2個 C.3個 D.4個10.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°11.在體育課上,甲,乙兩名同學分別進行了5次跳遠測試,經計算他們的平均成績相同.若要比較這兩名同學的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數 B.平均數 C.中位數 D.方差12.下列函數中,當x>0時,y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線y=(x﹣3)2+1的頂點坐標是____.14.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.15.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.16.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數為3,平均數為2,則這組數據的中位數為______.17.如圖,⊙C經過原點且與兩坐標軸分別交于點A與點B,點B的坐標為(﹣,0),M是圓上一點,∠BMO=120°.⊙C圓心C的坐標是_____.18.函數中,自變量的取值范圍是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數y=﹣12x+52的圖象與反比例函數y=(1)求反比例函數的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.20.(6分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯結AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯結EF.(1)當CM:CB=1:4時,求CF的長.(2)設CM=x,CE=y,求y關于x的函數關系式,并寫出定義域.(3)當△ABM∽△EFN時,求CM的長.21.(6分)已知拋物線y=x2+bx+c(b,c是常數)與x軸相交于A,B兩點(A在B的左側),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內,P′A2取得最小值時,求m的值及這個最小值.22.(8分)解不等式組,并把解集在數軸上表示出來.23.(8分)如圖,在四邊形中,為的中點,于點,,,,求的度數.24.(10分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關于x的一次函數,其關系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關于x的函數表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關系可以用來描述.請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.25.(10分)如圖,一次函數y=kx+b與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)26.(12分)某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?27.(12分)某汽車廠計劃半年內每月生產汽車20輛,由于另有任務,每月上班人數不一定相等,實每月生產量與計劃量相比情況如下表(增加為正,減少為負)生產量最多的一天比生產量最少的一天多生產多少輛?半年內總生產量是多少?比計劃多了還是少了,增加或減少多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據拋物線的圖象與系數的關系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax1+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.本題屬于中等題型.2、D【解析】分析:將數據從小到大排列,由中位數及眾數、平均數的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數為33℃,中位數為33℃,平均數是=33℃.故選D.點睛:本題考查了眾數、中位數的知識,解答本題的關鍵是由折線統(tǒng)計圖得到最高氣溫的7個數據.3、D【解析】
由不等式組有解且滿足已知不等式,以及分式方程有整數解,確定出滿足題意整數a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數解,得到a=0,2,共2個,故選:D.【點睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.4、D【解析】
分別根據同底數冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點睛】本題考查的是同底數冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.5、A【解析】
應明確在數軸上,從左到右的順序,就是數從小到大的順序,據此解答.【詳解】解:因為在數軸上-3在其他數的左邊,所以-3最??;故選A.【點睛】此題考負數的大小比較,應理解數字大的負數反而?。?、D【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂的圓心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.7、D【解析】
A.為了解襄陽市初中每天鍛煉所用時間,選擇抽樣調查,故A不符合題意;B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇抽樣調查,故B不符合題意;C.為了解神舟飛船設備零件的質量情況,選普查,故C不符合題意;D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調查,故D符合題意;故選D.8、A【解析】
由題意,因為與反比例函數都是關于直線對稱,推出A與B關于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數與的圖象在第二象限交于點,點與反比例函數都是關于直線對稱,與B關于直線對稱,,,點故選:A.【點睛】本題考查反比例函數與一次函數的交點問題,反比例函數的圖像與性質,圓的對稱性及軸對稱的性質.解題的關鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現A,B關于直線對稱.9、B【解析】
根據拋物線的對稱軸即可判定①;觀察圖象可得,當x=-3時,y<0,由此即可判定②;觀察圖象可得,當x=1時,y>0,由此即可判定③;觀察圖象可得,當x>2時,y的值隨x值的增大而增大,即可判定④.【詳解】由拋物線的對稱軸為x=2可得-b觀察圖象可得,當x=-3時,y<0,即9a-3b+c<0,所以a+c<觀察圖象可得,當x=1時,y>0,即a+b+c>0,③正確;觀察圖象可得,當x>2時,y的值隨x值的增大而增大,④錯誤.綜上,正確的結論有2個.故選B.【點睛】本題考查了二次函數圖象與系數的關系:二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定,△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.10、B【解析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.11、D【解析】
方差是反映一組數據的波動大小的一個量.方差越大,則各數據與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數據與其平均值的離散程度越小,穩(wěn)定性越好。【詳解】由于方差能反映數據的穩(wěn)定性,需要比較這兩名學生立定跳遠成績的方差.故選D.12、D【解析】A、、∵y=x2,∴對稱軸x=0,當圖象在對稱軸右側,y隨著x的增大而增大;而在對稱軸左側,y隨著x的增大而減小,故此選項錯誤B、k>0,y隨x增大而增大,故此選項錯誤C、B、k>0,y隨x增大而增大,故此選項錯誤D、y=(x>0),反比例函數,k>0,故在第一象限內y隨x的增大而減小,故此選項正確二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(3,1)【解析】分析:已知拋物線解析式為頂點式,可直接寫出頂點坐標.詳解:∵y=(x﹣3)2+1為拋物線的頂點式,根據頂點式的坐標特點可知,拋物線的頂點坐標為(3,1).故答案為(3,1).點睛:主要考查了拋物線頂點式的運用.14、107°【解析】
過C作d∥a,得到a∥b∥d,構造內錯角,根據兩直線平行,內錯角相等,及平角的定義,即可得到∠1的度數.【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【點睛】本題考查了平行線的性質以及正方形性質的運用,解題時注意:兩直線平行,內錯角相等.解決問題的關鍵是作輔助線構造內錯角.15、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質,反比例函數與一次函數的交點問題,對稱的性質.不等式k1x<+b的解集即k1x-b<的解集,根據不等式與直線和雙曲線解析式的關系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據函數圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關于原點對稱.由關于原點對稱的坐標點性質,直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數,即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、1.【解析】解:因為眾數為3,可設a=3,b=3,c未知,平均數=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數據按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數是1,所以中位數是1,故答案為:1.點睛:本題為統(tǒng)計題,考查平均數、眾數與中位數的意義,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.17、(,)【解析】
連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據∠BMO=120°可求出∠BAO以及∠BCO的度數,在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點睛】本題考查的是圓心角、弧、弦的關系及圓周角定理、直角三角形的性質、坐標與圖形的性質及特殊角的三角函數值,根據題意畫出圖形,作出輔助線,利用數形結合求解是解答此題的關鍵.18、【解析】
根據分式有意義的條件是分母不為2;分析原函數式可得關系式x?1≠2,解得答案.【詳解】根據題意得x?1≠2,解得:x≠1;故答案為:x≠1.【點睛】本題主要考查自變量得取值范圍的知識點,當函數表達式是分式時,考慮分式的分母不能為2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=2x(2)(0,【解析】
(1)根據反比例函數比例系數k的幾何意義得出12【詳解】(1)∵反比例函數y==kx∴12∵k>0,∴k=2,故反比例函數的解析式為:y=2x(2)作點A關于y軸的對稱點A′,連接A′B,交y軸于點P,則PA+PB最?。蓎=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1設直線A′B的解析式為y=mx+n,則-m+n=24m+n=12∴直線A′B的解析式為y=-3∴x=0時,y=1710∴P點坐標為(0,1710【點睛】本題考查的是反比例函數圖象與一次函數圖象的交點問題以及最短路線問題,解題的關鍵是確定PA+PB最小時,點P的位置,靈活運用數形結合思想求出有關點的坐標和圖象的解析式是解題的關鍵.20、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】
(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構建函數關系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點睛】本題考查了正方形的判定與性質,平行線分線段成比例定理,勾股定理,相似三角形的判定與性質,全等三角形的判定與性質.熟練運用平行線分線段成比例定理是解(1)的關鍵;證明△EAM∽△EBA是解(2)的關鍵;綜合運用全等三角形的判定與性質是解(3)的關鍵.21、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】
(1)根據A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數)的圖象上,可以求得b、c的值;(3)①根據題意可以得到點P′的坐標,再根據函數解析式可以求得點B的坐標,進而求得直線BC的解析式,再根據點P′落在直線BC上,從而可以求得m的值;②根據題意可以表示出P′A3,從而可以求得當P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數)與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關于原點對稱,∴P′(﹣m,﹣t),當y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設直線BC對應的函數解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【點睛】本題是二次函數綜合題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用二次函數的性質解答.22、不等式組的解集為,在數軸上表示見解析.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后把不等式的解集表示在數軸上即可.【詳解】由2(x+2)≤3x+3,可得:x≥1,由,可得:x<3,則不等式組的解為:1≤x<3,不等式組的解集在數軸上表示如圖所示:【點睛】本題考查了一元一次不等式組,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.23、【解析】
連接,根據線段垂直平分線的性質得到,根據等腰三角形的性質、三角形內角和定理計算即可.【詳解】連接,∵為的中點,于點,∴,∴,∵,∴,∵,∴,∵,∴,∴,∴.【點睛】本題考查的是線段垂直平分線的性質、等腰三角形的性質以及三角形內角和定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.24、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】
(1)根據表格中的數據,運用待定系數法,即可求得y1關于x的函數表達式;(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據二次函數的性質,即可得出最短時間.【詳解】(1)設y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關于x的函數解析式為y1=2x+2.(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當x=9時,y取得最小值,最小值為39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.【點睛】本題主要考查了二次函數的應用,解此類題的關鍵是通過題意,確定出二次函數的解析式,然后確定其最大值最小值,在求二次函數的最值時,一定要注意自變量x的取值范圍.25、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數圖象上點的坐標特征即可求出a值,從而得出反比例函數解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數法即可求出直線AB的解析式;
(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據三角形的面積公式結合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;
(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據反比例函數解析式以及平移的性質找出點E、F、M、N的坐標,根據EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據平移的性質即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數y=的圖象上,∴a=4×3=12,∴反比例函數解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數的解析式為y=2x﹣1.(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋅錠現貨交收與庫存管理服務合同3篇
- 2025版大型公共建筑換熱站節(jié)能減排合同3篇
- 生物醫(yī)藥招投標操作指南
- 陶瓷業(yè)收款管理規(guī)范
- 2024年航空航天設備采購服務協(xié)議3篇
- 保險業(yè)數據中心:機房施工合同
- 建筑物給排水設備租賃合同
- 體育行業(yè)教練隊伍管理辦法
- 娛樂服務質量管理辦法
- 2025版特色民宿項目經營管理承包合同3篇
- 穴位貼敷護理培訓
- 腰椎間盤突出癥護理查房課件
- JJF(陜) 085-2022 全自動容量稀釋配標儀校準規(guī)范
- DB45T 2866-2024 靈芝菌種制備技術規(guī)程
- 2024年度區(qū)塊鏈軟件產品知識產權共享協(xié)議3篇
- 人教版九年級上學期物理期末復習(壓軸60題28大考點)
- 粉末銷售合同范例
- 齊魯名家 談方論藥知到智慧樹章節(jié)測試課后答案2024年秋山東中醫(yī)藥大學
- 人教版(2024版)七年級上冊英語期末模擬測試卷(含答案)
- 山東省濟南市2023-2024學年高一上學期1月期末考試 物理 含答案
- 科研設計及研究生論文撰寫智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學
評論
0/150
提交評論