版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
歡迎來主頁下載---精品文檔班級:八(1112)精品文檔歡迎來主頁下載---精品文檔八年級是初中學(xué)習(xí)過程中的關(guān)鍵時期,在我們班上,兩極分化問題很是嚴重,對優(yōu)等生來說他們能夠理解知識形成技能具備一定的數(shù)學(xué)能力,而對后進生來說簡單的基礎(chǔ)知識還不能夠掌握成績不容樂觀。為使學(xué)生學(xué)好進一步學(xué)習(xí)所必需的代數(shù)、幾何的基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生運算能力、發(fā)展思維能力和空間觀念,使學(xué)生能夠運用所學(xué)知識解決實際問題,逐步形成數(shù)學(xué)創(chuàng)新意識,作為教師,我將實行因材施教策略。二、教材內(nèi)容分析第一章《勾股定理》的主要內(nèi)容是勾股定理的探索和應(yīng)用。第二章《實數(shù)》主要內(nèi)容是平方根、立方根的概念和求法,實數(shù)的概念和運算。本章的內(nèi)容雖第三章《圖形的平移與旋轉(zhuǎn)》主要內(nèi)容是生活中一些簡單幾何圖形的平移和旋轉(zhuǎn)。第四章《四邊形性質(zhì)探索》的主要內(nèi)容是四邊形的有關(guān)概念、幾種特殊的四邊形(平行四邊形、矩形、菱形、正方形、梯形)的性質(zhì)和判定以及三角形、梯形的中位線。第五章《位置的確定》主要講述平面直角坐標系中點的確定,會找出一些點的坐標。第六章《一次函數(shù)》的主要內(nèi)容是介紹函數(shù)的概念,以及一次函數(shù)的圖像和表達式,學(xué)會用一次函數(shù)解決一些實際問題。第七章《二元一次方程組》要求學(xué)會解二元一次方程組,并用二元一次方程組來解一些實際的第八章《數(shù)據(jù)的代表》主要講述平均數(shù)和中位數(shù)、眾數(shù)的概念,會求平均數(shù)和能找出中位數(shù)及三、教學(xué)目標要求上半學(xué)期完成第一章到第四章第四節(jié),下半學(xué)期完成第四章第五節(jié)到本冊教材結(jié)束。掌握平方根與立方根、實數(shù)、平面坐標系、一次函數(shù)、勾股定理、四邊形性質(zhì)等知識并形成相應(yīng)數(shù)學(xué)技能。在情感與價值觀上認識圖形中的數(shù)量關(guān)系,培養(yǎng)學(xué)生的實事求是認真嚴肅的學(xué)習(xí)態(tài)度,在民主和諧合作的學(xué)習(xí)過程中養(yǎng)成獨立探究勤與思考大膽創(chuàng)新,發(fā)展學(xué)生的非智力因素提高學(xué)生的數(shù)學(xué)素質(zhì)與1.正確理解二次根式的概念,掌握二次根式的基本運算,并能熟練地進行二次根式的化簡。進一步提高學(xué)生的運算能力。3.理解四邊形及有關(guān)概念,掌握幾種特殊四邊形的性質(zhì)定理及判定。4.理解相似一次函數(shù)的概念,掌握一次函數(shù)的圖像和表達式,學(xué)會用一次函數(shù)解決一些實際問重點:勾股定理探索、四邊形性質(zhì)的探索、實數(shù)的概念、一次函數(shù)圖象及其應(yīng)用、二元一次方難點:勾股定理探索、四邊形性質(zhì)的掌握一次函數(shù)圖象及其應(yīng)用的數(shù)形結(jié)合技能、二元一次方程組及其應(yīng)用能力培養(yǎng)。精品文檔歡迎來主頁下載---精品文檔1、認真做好教學(xué)工作。把認真教學(xué)作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內(nèi)容,認真上課,批改作業(yè),認真輔導(dǎo),認真制作測試試卷,也讓學(xué)生2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。3、引導(dǎo)學(xué)生積極參加知識的構(gòu)建,營造民主、和諧、平等、自主、探索、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫小論文,寫復(fù)習(xí)提綱,使知識來源4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思5、運用新課程標準的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補智力上的不足。7、開展分層教學(xué),布置作業(yè)設(shè)置A、B、C三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問照顧好好、中、差三類學(xué)生,讓每個學(xué)生盡可能獲得最大發(fā)展。六、教學(xué)進度安排教學(xué)進度表12345精品文檔教材內(nèi)容及備注第一章測試講解(1)復(fù)習(xí)與第三章測試(2)節(jié)數(shù)5555教師節(jié)歡迎來主頁下載---精品文檔6789前三章小復(fù)習(xí)與題目講解(1)期中復(fù)習(xí)期中考試及試題講解回顧與思考、復(fù)習(xí)與測試7.6二元一次方程與一次函數(shù)(2)總復(fù)習(xí)5及期末考試555555555555555以上計劃從制定之日起執(zhí)行,若有不妥之處,請學(xué)校教務(wù)處給予指正,并督促執(zhí)行精品文檔歡迎來主頁下載---精品文檔第一章勾股定理1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推力意識,主動探究的習(xí)慣,進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學(xué)生的說理和簡單的推理的意識及能重點難點:重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。難點:勾股定理的發(fā)現(xiàn)一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定正方形B中有個小方格,即A的面積為個單位。正方形C中有個小方格,即A的面積為個2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:學(xué)生討論、交流形成共識后,教師總結(jié):以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。在同學(xué)的交流基礎(chǔ)上,老師板書:直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c那么a2+b2=c2我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:精品文檔歡迎來主頁下載---精品文檔解:由于三角形的兩邊為3、4辨析1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。斜邊綜上所述這個題目條件不足,第三邊無法求得。1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流2.掌握勾股定理和他的簡單應(yīng)用重點:能熟練運用拼圖的方法證明勾股定理難點:用面積證勾股定理七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可2在同學(xué)交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。這就可以從理論上說明勾股定理存在。請同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。八、講例1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛精品文檔歡迎來主頁下載---精品文檔米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。答:飛機每個小時飛行540千米。觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足a2+b2=c2同學(xué)在議論交流形成共識之后,老師總結(jié)。勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。十、作業(yè)知識與技能1.掌握直角三角形的判別條件,并能進行簡單應(yīng)用;2.進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.情感態(tài)度與價值觀敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識.運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.會辨析哪些問題應(yīng)用哪個結(jié)論.課前準備標有單位長度的細繩、三角板、量角器、題篇請學(xué)生復(fù)述勾股定理;使用勾股定理的前提創(chuàng)設(shè)問題情景:由課前準備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.提出課題:能得到直角三角形嗎?(精品文檔歡迎來主頁下載---精品文檔這個三角形的三邊分別是多少?(一份視為1)它們之間就是說,如果三角形的三邊為a,b,c,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)⒉繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?⒊直角三角形判定定理:如果三角形的三邊長a,三角形.+b2=c2的三個正整數(shù),稱為勾股數(shù).⒋例1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?⒈下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由.三角形.+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù).教學(xué)知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.能力訓(xùn)練要求:1.學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.情感與價值觀要求:1.通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.2.在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性,體現(xiàn)人人都學(xué)有用的數(shù)學(xué).重點:探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.難點:利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.精品文檔歡迎來主頁下載---精品文檔前幾節(jié)課我們學(xué)習(xí)了勾股定理,你還記得它例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?2、講授新課:①、螞蟻怎么走最近BAABBAAB出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).(1)同學(xué)們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)(3)螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?(學(xué)生分組討論,公布結(jié)果)我們知道,圓柱的側(cè)面展開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側(cè)面展開下圖).我們不難發(fā)現(xiàn),剛才幾位同學(xué)的走法:第(4)條路線最短.因為“兩點之間的連線中線段最短”.DAB=90°,∠CBA=90°.連結(jié)BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.③、隨堂練習(xí)精品文檔歡迎來主頁下載---精品文檔1.分析:首先我們需要根據(jù)題意將實際問題轉(zhuǎn)化成數(shù)學(xué)模型.2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.解:設(shè)伸入油桶中的長度為x米,則應(yīng)求最長時和最短時的值.在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少?我們可以將這個實際問題轉(zhuǎn)化成數(shù)學(xué)模型.解:如圖,設(shè)水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得④、課時小結(jié)這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發(fā)現(xiàn)用數(shù)學(xué)知識解決這些實際問題,更為重要的是將它們轉(zhuǎn)化成數(shù)學(xué)模型.⑤、課后作業(yè)精品文檔歡迎來主頁下載---精品文檔(一)知識目標:1.通過拼圖活動,讓學(xué)生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性.2.能判斷給出的數(shù)是否為有理數(shù);并能說出現(xiàn)由.(二)能力訓(xùn)練目標:1.讓學(xué)生親自動手做拼圖活動,感受無理數(shù)存在的必要性和合理性,培養(yǎng)大家的動手能力和合作精神.2.通過回顧有理數(shù)的有關(guān)知識,能正確地進行推理和判斷,識別某些數(shù)是否為有理數(shù),訓(xùn)練他們的思維判斷能力.(三)情感與價值觀目標:1.激勵學(xué)生積極參與教學(xué)活動,提高大家學(xué)習(xí)數(shù)學(xué)的熱情.2.引導(dǎo)學(xué)生充分進行交流,討論與探索等教學(xué)活動,培養(yǎng)他們的合作與鉆研精神.3.了解有關(guān)無理數(shù)發(fā)現(xiàn)的知識,鼓勵學(xué)生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^斗的精神.1.讓學(xué)生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程.感知生活中確實存在著不同于有理數(shù)的數(shù).2.會判斷一個數(shù)是否為有理數(shù).2.判斷一個數(shù)是否為有理數(shù).教師引導(dǎo),主要由學(xué)生分組討論得出結(jié)果.一、創(chuàng)設(shè)問題情境,引入新課[師]同學(xué)們,我們學(xué)過不計其數(shù)的數(shù),概括起來我們都學(xué)過哪些數(shù)呢?[生]在小學(xué)我們學(xué)過自然數(shù)、小數(shù)、分數(shù).[生]在初一我們還學(xué)過負數(shù).[師]對,我們在小學(xué)學(xué)了非負數(shù),在初一發(fā)現(xiàn)數(shù)不夠用了,引入了負數(shù),即把從小學(xué)學(xué)過的正數(shù)、零擴充到有理數(shù)范圍,有理數(shù)包括整數(shù)和分數(shù),那么有理數(shù)范圍是否就能滿足我們實際生活的需要呢?下面我們就來共同研究這個問題.二、講授新課[師]請大家四個人為一組,拿出自己準備好的兩個邊長為1的正方形和剪刀,認真討論之后,動手剪一剪,拼一拼,設(shè)法得到一個大的正方形,好嗎?[生]好.(學(xué)生非常高興地投入活動中).[師]經(jīng)過大家的共同努力,每個小組都完成了任務(wù),請各組把拼的圖展示一下.同學(xué)們非常踴躍地呈現(xiàn)自己的作品給老師.[師]現(xiàn)在我們一齊把大家的做法總結(jié)一下:精品文檔歡迎來主頁下載---精品文檔下面請大家思考一個問題,假設(shè)拼成大正方形的邊長為a,則a應(yīng)滿足什么條件呢?[生甲]a是正方形的邊長,所以a肯定是正數(shù).[生乙]因為兩個小正方形面積之和等于大正方形面積,所以根據(jù)正方形面積公式可知a2=2.[師]大家說得都有道理,前面我們已經(jīng)總結(jié)了有理數(shù)包括整數(shù)和分數(shù),那么a是整數(shù)嗎?a是分數(shù)嗎?請大家分組討論后回答.[生甲]我們組的結(jié)論是:因為12=1,22=4,32=9,…整數(shù)的平方越來越大,所以a應(yīng)在1和2之間,故a不可能是整數(shù).能是分數(shù).[師]經(jīng)過大家的討論可知,在等式a2=2中,a既不是整數(shù),也不是分數(shù),所以a不是有理數(shù),但在現(xiàn)實生活中確實存在像a這樣的數(shù),由此看來,數(shù)又不夠用了.(1)在下圖中,以直角三角形的斜邊為邊的[師]請大家先回憶一下勾股定理的內(nèi)容.b是有理數(shù)嗎?請舉手回答.[生乙]沒有兩個相同的分數(shù)相乘得5,故b不可能是分數(shù).[生丙]因為沒有一個整數(shù)或分數(shù)的平方為5,所以5不是有理數(shù).[師]大家分析得很準確,像上面討論的數(shù)a,b都不是有理數(shù),而是另一類數(shù)——無理數(shù).關(guān)于中的一個叫希伯索斯的成員發(fā)現(xiàn)邊長為1的正方形的對角線的長不能用整數(shù)或整數(shù)之比來表示,這個發(fā)現(xiàn)動搖了畢達哥拉斯學(xué)派的信條,據(jù)說為此希伯索斯被投進了大海,他為真理而獻出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來古希臘人終于正視了希伯索斯的發(fā)現(xiàn).也就是我們前面談過的a2=2精品文檔歡迎來主頁下載---精品文檔我們現(xiàn)在所學(xué)的知識都是前人給我們總結(jié)出來的,我們一方面應(yīng)積極地學(xué)習(xí)這些經(jīng)驗,另一方面我們也不能死搬教條,要大膽質(zhì)疑,如不這樣科學(xué)就會永遠停留在某處而不前進,要向古希臘的希伯索斯學(xué)習(xí),學(xué)習(xí)他為捍衛(wèi)真理而勇于獻身的精神.三、課堂練習(xí)解:由正三角形的性質(zhì)可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整數(shù)可能是分數(shù).(二)補充練習(xí)為了加固一個高2米、寬1米的大門,需要在對角線位置加固一條木板,設(shè)木板長為a米,解:a的值大約是2.2,這個值不可能是分數(shù).1.通過拼圖活動,經(jīng)歷無理數(shù)產(chǎn)生的實際背景,讓學(xué)生感受有理數(shù)又不夠用了.2.能判斷一個數(shù)是否為有理數(shù).五、課后作業(yè):見作業(yè)本。1.借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想.2.會判斷一個數(shù)是有理數(shù)還是無理數(shù).1.借助計算器進行估算,培養(yǎng)學(xué)生的估算能力,發(fā)展學(xué)生的抽象概括能力,并在活動中進一步發(fā)展學(xué)生獨立思考、合作交流的意識和能力.2.探索無理數(shù)的定義,以及無理數(shù)與有理數(shù)的區(qū)別,并能辨別出一個數(shù)是無理數(shù)還是有理數(shù),訓(xùn)練大家的思維判斷能力.1.讓學(xué)生理解估算的意義,掌握估算的方法,發(fā)展學(xué)生的數(shù)感和估算能力.2.充分調(diào)動學(xué)生的積極性,培養(yǎng)他們的合作精神,提高他們的辨識能力.1.無理數(shù)概念的探索過程.2.用計算器進行無理數(shù)的估算.3.了解無理數(shù)與有理數(shù)的區(qū)別,并能正確地進行判斷.1.無理數(shù)概念的建立及估算.2.用所學(xué)定義正確判斷所給數(shù)的屬性.老師指導(dǎo)學(xué)生探索法精品文檔歡迎來主頁下載---精品文檔一、創(chuàng)設(shè)問題情境,引入新課中的a,b既不是整數(shù),也不是分數(shù),那么它們究竟是什么數(shù)呢?本節(jié)課我們就來揭示它的真面目.二、講授新課大家判斷一下3個正方形的邊長之間有怎樣的大小關(guān)系?說說你的理由.[生]因為3個正方形的面積分別為1,2,4,而面積又等于邊長的平方,所以面積大的正方形邊長就大.位上是4,請大家用同樣的方法確定百分位、千分位上的數(shù)字.萬分位上的數(shù)字為2.[師]大家非常聰明,請一位同學(xué)把自己的探索過程整理一下,用表格的形式反映出來.[生]我的探索過程如下.邊長a[生]可以.[師]請大家用上面的方法估計面積為5的正方形的邊長b的值.邊長b會不會算到某一位時,它的平方恰好等于5?請大家分組合作后回答.(約4分鐘)精品文檔歡迎來主頁下載---精品文檔[生]邊長b不會算到某一位時,它的平方恰好等于5,但我不知道為什么.[師]好.這位同學(xué)很坦誠,不會就要大膽地提出來,而不要冒充會,這樣才能把知識學(xué)扎實,學(xué)透,大家應(yīng)該向這位同學(xué)學(xué)習(xí).這個問題我來回答.如果b算到某一位時,它的平方恰好等于5,即b是一個有限小數(shù),那么它的平方一定是一個有限小數(shù),而不可能是5,所以b不可能是有限小數(shù).2.無理數(shù)的定義請大家把下列各數(shù)表示成小數(shù).3,,,,,并看它們是有限小數(shù)還是無限小數(shù),是循環(huán)小數(shù)還是不循環(huán)小數(shù).大家可以每個小組計算一個數(shù),這樣可以節(jié)省時間.[師]上面這些數(shù)都是有理數(shù),所以有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示.反過來,任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù).5之間8的個數(shù)逐次加1)也是一個無限不循環(huán)小數(shù),它們都3.有理數(shù)與無理數(shù)的主要區(qū)別(1)無理數(shù)是無限不循環(huán)小數(shù),有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù).(2)任何一個有理數(shù)都可以化為分數(shù)的形式,而無理數(shù)則不能.4.例題講解4,-,●343三、課堂練習(xí)(一)隨堂練習(xí)1,-,18.無理數(shù)有-Π.7(二)補充練習(xí)判斷題(1)有理數(shù)與無理數(shù)的差都是有理數(shù).(2)無限小數(shù)都是無理數(shù).(3)無理數(shù)都是無限小數(shù).(4)兩個無理數(shù)的和不一定是無理數(shù).精品文檔歡迎來主頁下載---精品文檔解:(1)錯.例Π-1是無理數(shù).(3)對.因為無理數(shù)就是無限不循環(huán)小數(shù),所以是無限小數(shù).(4)對.因為兩個符號相反的無理數(shù)之和是有理數(shù).例Π-Π=0.0.351,-3在下列每一個圈里,至少填入三個適當?shù)臄?shù).5[生]有理數(shù)集合填03.本節(jié)課我們學(xué)習(xí)了以下內(nèi)容.1.用計算器進行無理數(shù)的估算.2.無理數(shù)的定義.3.判斷一個數(shù)是無理數(shù)或有理數(shù).五、課后作業(yè):見作業(yè)本。1、了解算術(shù)平方根的概念,會用根號表示一個數(shù)的算術(shù)平方根。2、會求一個正數(shù)的算術(shù)平方根。3、了解算術(shù)平方根的性質(zhì)。教學(xué)重點:算術(shù)平方根的概念、性質(zhì),會用根號表示一個正數(shù)的算術(shù)平方根。教學(xué)難點:算術(shù)平方根的概念、性質(zhì)。1.教師活動:回顧上節(jié)課的拼圖活動及探索無理數(shù)的過程,提出問題:面積為13的正方形的邊長究竟是多少?精品文檔歡迎來主頁下載---精品文檔2.師生互動集體交流后,說明無理數(shù)也需要一種表示方法。算術(shù)平方根的概念:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么,這個正數(shù)x就叫做a這樣的話,一個非負數(shù)的算術(shù)平方根就可以表示為a。例1分別寫出下列各數(shù)的算術(shù)平方根4例2自由下落物體的高度h(米)與下落時間t(秒)的關(guān)系為h=4.9t2.有一鐵球從19.6米高的建筑物上自由下落,到達地面需要多長時間?學(xué)生活動:一個同學(xué)在黑板上板演,其他同學(xué)在練習(xí)本上做,然后交流。師生互動:完成引例中的x2=13,則x=13,以后我們可以利用計算器求出這個數(shù)的近似三、隨堂練習(xí):P391①算術(shù)平方根的定義、表示;轉(zhuǎn)化的數(shù)學(xué)方法:即將陌生的問題轉(zhuǎn)化為熟悉的問題解決。1、了解平方根的概念,會用根號表示一個數(shù)的平方根。2、會求一個正數(shù)的平方根。精品文檔歡迎來主頁下載---精品文檔3、了解平方根和算術(shù)平方根的性質(zhì)。4、了解乘方和開方是互逆運算,會利用這個互逆運算求某些非負數(shù)的算術(shù)平方根和平方根。教學(xué)重點:了解平方根和開平方的概念、性質(zhì),會用根號表示一個正數(shù)的算術(shù)平方根和平方根。教學(xué)難點:平方根和算術(shù)平方根的區(qū)別。負數(shù)沒有平方根,即負數(shù)不能進行開平方運算。1、算術(shù)平方根的概念,任何一個有理數(shù)都有算術(shù)平方根嗎?算術(shù)平方根有什么性質(zhì)。4學(xué)生活動:學(xué)生思考,然后交流,得出平方根的定義。一般地,如果一個數(shù)x的平方等于a,即x2=a,那么,這個數(shù)x就叫做a的平方根。也叫做求出下列各數(shù)的平方根。416,0—25,9開平方:求一個數(shù)a的平方根的運算,叫做開平方。其中a叫做被開方數(shù)底數(shù)的運算是開方運算)★教師活動開平方和平方互為逆運算,我們可以利用平方運算來求平方根。(1)642)——,(3)0.0004,精品文檔歡迎來主頁下載---精品文檔五、隨堂練習(xí):P361、2例2若x2+402=412,求x;通過例2,要學(xué)生進一步明白平方根與算術(shù)平方根在應(yīng)用上的區(qū)別。六、想一想(3)對于正數(shù)等于多少?1.平方根的定義、表示方法、求法、性質(zhì)。平方根和算術(shù)平方根的區(qū)別和聯(lián)系。2.使學(xué)生學(xué)到由特殊到一般的歸納法。P36習(xí)題2.4和試一試P5331.使學(xué)生了解一個數(shù)的立方根概念,并會用根號表示一個數(shù)的立方根;3.明確立方根個數(shù)的性質(zhì),分清一個數(shù)的立方根與平方根的區(qū)別.教學(xué)重點和難點重點:立方根的概念及求法.難點:立方根與平方根的區(qū)別.教學(xué)過程設(shè)計(1)什么叫一個數(shù)a的平方根?如何用符號表示數(shù)a(≥0)的平方根?(2)正數(shù)有幾個平方根?它們之間的關(guān)系是什么?負數(shù)有沒有平方根?0平方根是什么?(3)當a≥0時,式子aa,±a,的意義各是什么?二、引入新課3.指出:上面各題是已知底數(shù)和乘方指數(shù)求三次冪的運算,也叫乘方運算.怎樣求下列括號內(nèi)的數(shù)?各題中已知什么?求什么?答:已知乘方指數(shù)和3次冪,求底數(shù),也就是“已知某數(shù)的立方,求某數(shù)”.精品文檔歡迎來主頁下載---精品文檔設(shè)某數(shù)為x,則(1)式為x3=18,求x;(2)式為x3=-27125,求x;(3)式為x3=0求x。2.立方根的概念.一般地,如果一個數(shù)的立方等于a,這個數(shù)就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果x3=a,那么x叫做a的立方根.數(shù)a的立方根用符號“3a”表示,讀作“三次根號a,其中a是被開方數(shù),3是根指數(shù).(注意:根指數(shù)3不能省略).3.開立方.求一個數(shù)的立方根的運算,叫做開立方.開立方與立方也是互為逆運算,因此求一個數(shù)的立方根可以通過立方運算來求.三、講解例題:分析:求一個數(shù)的立方根,我們可以通過立方運算來求.問:除2以外,還有什么數(shù)的立方等于8?也就是說,正數(shù)8還有別的立方根嗎?答:除2以外,沒有其它的數(shù)的立方等于8,也就是說,正數(shù)8的立方根只有一個.(2)因為(-2)3=8,所以-8的立方根是-2即3-8=-2問:除-2以外,還有什么數(shù)的立方等于8?,也就是說,負數(shù)-8還有別的立方根嗎?答:除-2以外,沒有其他的數(shù)的立方等于-8,也就是說,-8的立方根只有1個.(4)因為(-)3=-——,所以-27125的立方根是-35,即3-問:一個正數(shù)有幾個立方根?一個負數(shù)有幾個立方根?零的立方根是什么?答:正數(shù)有一個正的立方根;負數(shù)有一個負的立方根;零的立方根仍舊是零.指出:立方根的個數(shù)的性質(zhì)可以概括為立方根的唯一性,即一個數(shù)的立方根是唯一的.--1A.0.5B.±0.5C.0.05D.0.005(2)下列判斷中錯誤的是()A.一個數(shù)的立方根與這個數(shù)的乘積為非負數(shù)B.一個數(shù)的兩個平方根之積負數(shù)C.一個數(shù)的立方根未必小于這個數(shù)D.零的平方根等于零的立方根精品文檔歡迎來主頁下載---精品文檔1.什么叫一個數(shù)的立方根?怎樣用符號表示數(shù)a的立方根?a的取值范圍是什么?2.數(shù)的立方根與數(shù)的平方根有什么區(qū)別?答:1.如果一個數(shù)的立方等于a,這個數(shù)就叫做a的立方根,用符號3a表示,a為任意數(shù).2.正數(shù)只有一個正的立方根,但有兩個互為相反數(shù)的平方根;負數(shù)有一個負的立方根,但沒有平方根.3.求一個數(shù)的立方根,可以通過立方運算來求.(一)教學(xué)知識點1.能通過估算檢驗計算結(jié)果的合理性,能估計一個無理數(shù)的大致范圍,并能通過估算比較兩個數(shù)的大小.2.掌握估算的方法,形成估算的意識,發(fā)展學(xué)生的數(shù)感.(二)能力訓(xùn)練要求1.能估計一個無理數(shù)的大致范圍,培養(yǎng)學(xué)生估算的意識.2.讓學(xué)生掌握估算的方法,訓(xùn)練他們的估算能力.1.讓學(xué)生理解估算的意義,發(fā)展學(xué)生的數(shù)感.2.掌握估算的方法,提高學(xué)生的估算能力.掌握估算的方法,并能通過估算比較兩個數(shù)的大小.“猜”字的意思就是根據(jù)自己的判斷而估計得出的結(jié)果,它并不是準確值,但也不是無中生有,是有一定的理論根據(jù)的,本節(jié)課我們就來學(xué)習(xí)有關(guān)估算的方法.二.講授新課問題:某地開辟了一塊長方形的荒地,新建一個以環(huán)保為主題的公園,已知這塊荒地的長是寬的2(3)該公園中心有一個圓形花圃,它的面積提示:要想知道公園的寬大約是多少,首先應(yīng)根據(jù)已知條件求出已知量與未知量的關(guān)系式,那么(因為已知長方形的長是寬的2倍,且它的面積為40000米2,根據(jù)面積公式就能找到它們的關(guān)系式.可設(shè)公園的寬為x米,則公園的長為2x米,由面積公式得:在估算時我們首先要大致確定數(shù)的范圍,因此有必要做一些準備工作.請大家先計算出20以內(nèi)正整數(shù)的平方和10以內(nèi)正整數(shù)的立方.并加以記憶,對我們的估算很有幫助.精品文檔歡迎來主頁下載---精品文檔下面我們可以進行估算,請同學(xué)們分組討論而后回答.大家在估算時就可用這樣的方法大致估算一下是幾位數(shù),這樣使范圍縮小,為下一步的估算作準備.由此看來公園的寬大約是幾百米,下面請大家繼續(xù)討論做(2)題.所以x應(yīng)為400多,再繼續(xù)估算,估計十位上的數(shù)字是幾.因為題目要求誤差小于10米,好應(yīng)精確到十位,所以我們估算出十位上的數(shù)就行了,即公園的寬x應(yīng)為440米,現(xiàn)在我們可以根據(jù)剛才的估算來總結(jié)一下步驟.2.確定最高位上的數(shù)字(如百位).3.確定下一位上的數(shù)字.(如十位)4.依次類推,直到確定出個位上的數(shù),或者按要求精確到小數(shù)點后的某一位.在以后的估算中我們就可按這樣的步驟進行.再看(3)題,先列出關(guān)系式.二、議一議(1)下列計算結(jié)果正確嗎?你是怎樣判斷的?與同伴交流.小,即小于10,所以估算錯誤.錯誤.第(2)小題請大家按總結(jié)的步驟進行.(1)先確定位數(shù)精品文檔歡迎來主頁下載---精品文檔(2)確定個位上數(shù)字.三、例題講解[例2]通過估算,比較與的大小分析:因為這兩個數(shù)的分母相同,所以只需比較分子即可.(一)隨堂練習(xí)本節(jié)課主要是讓學(xué)生掌握估算的方法,形成估算的意識,發(fā)展學(xué)生的數(shù)感,并能用估算來比較大小.(一)知識目標1.會用計算器求平方根和立方根.2.經(jīng)歷運用計算器探求數(shù)學(xué)規(guī)律的活動,發(fā)展合情推理的能力.(二)能力訓(xùn)練目標1.鼓勵學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲.2.鼓勵學(xué)生自己探索計算器的用法,并能熟悉用法.3.能用計算器探索有關(guān)規(guī)律的問題,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性以及數(shù)學(xué)結(jié)論的確定性.(三)情感與價值觀目標讓學(xué)生經(jīng)歷運用計算器的活動,培養(yǎng)學(xué)生探索規(guī)律的能力,發(fā)展學(xué)生合理推理的能力.1.探索計算器的用法.2.用計算器探求數(shù)學(xué)規(guī)律.1.探索計算器的用法.2.用計算器探求數(shù)學(xué)規(guī)律.精品文檔歡迎來主頁下載---精品文檔學(xué)生探索法.我們在前幾節(jié)課分別學(xué)習(xí)了平方根和立方根的定義,還知道乘方與開方是互為逆運算.比如的立方,20以內(nèi)數(shù)的平方要求大家牢記在心,這樣可以根據(jù)逆運算快速地求出這些特殊數(shù)的平方根或立方根,那么對于不特殊的數(shù)我們應(yīng)怎么求其方根呢?可以根據(jù)估算的方法來求,但是這樣求方根的速度太慢,這節(jié)課我們就學(xué)習(xí)一種快速求方根的方法,用計算器開方.二、新課講解[師]請大家互相看一下計算器,拿類型相同的計算器的同學(xué)請坐到一起.這樣便于大家互相討論問題.如果你的計算器的類型與書中的計算器的類型相同,請你按照書中的步驟熟悉一下程序,若你的計算器的類型不同于書中的計算器,請拿相同類型計算器的同學(xué)先要探索一下如何求平方根、立方根的步驟,把程序記下來,好嗎?給大家8分鐘時間進行探索.[生]掌握了.27的數(shù)據(jù)相對照,檢查自己做的是否正確.[生]正確.三、做一做利用計算器,求下列各式的值(結(jié)果保留4個有效數(shù)字):5[生]能.-0.432≈-0.7560.5[師]請大家用計算器求下列各式的值(結(jié)果保留4個有效數(shù)字)[師]剛才我們練習(xí)了10個小題,對于求平方根或者立方根的程序已基本熟練,在此基礎(chǔ)上,精品文檔歡迎來主頁下載---精品文檔下面我們來做一個判斷題,看看題中已經(jīng)求出的立方根與平方根是否正確.[生](1)正確.因為題目沒有要求結(jié)果保留幾個有效數(shù)字,所以正確.(2)正確.和上面的原因相同.(1)任意找一個你認為很大的正數(shù),利用計算器對它進行開平方運算,對所得結(jié)果再進行開平方[師]請大家每人找一個很大的正數(shù),不同的人的數(shù)字不要相同,按要求去做然后總結(jié).[生](齊聲答)也是這個結(jié)果.[生]任何一個大于1的數(shù),不管它有多大,一直進行開平方運算,結(jié)果越來越近1.[師]這位同學(xué)的語言表達能力很棒,這就是規(guī)律,再看(2)題.(2)改用另一個小于1的正數(shù)試一試,看看是否仍有規(guī)律.[生]和上面的結(jié)果一樣.[師]既然結(jié)果相同,能否把它們合起來總結(jié)一下規(guī)律是什么?[生]任何一個正數(shù),不管它是大于1的數(shù),還是小于1的數(shù),一直進行開平方運算,運算的[師]非常棒.大家能否把(1)、(2)中的開平[生]能.[師]請一位同學(xué)總結(jié)一下.[生]任何一個正數(shù),利用計算器進行開立方運算,對所得結(jié)果再進行開立方運算…隨著開方次數(shù)的增加,結(jié)果是越來越接近1.五、課堂練習(xí)2.用計算器求下列各式的值.EQ\*jc3\*hps35\o\al(\s\up12(8),25)37六、課時小結(jié)1.探索用計算器求平方根和立方根的步驟,并能熟練地進行操作.精品文檔歡迎來主頁下載---精品文檔2.經(jīng)歷運用計算器探求數(shù)學(xué)規(guī)律的活動,發(fā)展合情推理的能力.1.了解無理數(shù)及實數(shù)的意義,并用類比的方法引入實數(shù)的相關(guān)概念等;2.了解實數(shù)的相反數(shù)和絕對值的意義,并會求一個實數(shù)的相反數(shù)和絕對值;3.靈活運用開方的有關(guān)知識解決問題;體現(xiàn)從有理數(shù)運算到實數(shù)運算的自然過渡。2.對無理數(shù)相反數(shù)和絕對值的求法。2.對無理數(shù)的意義的理解。2.奇次方根和偶次方根將一個數(shù)開奇次方時,求得的方根叫做奇次方根;將一個非負數(shù)開偶次方時,求得的方根叫做偶次方根。3.開方:求一個數(shù)的方根的運算,叫做開方。4.有理數(shù)整數(shù)和分數(shù)統(tǒng)稱為有理數(shù),有理數(shù)都可以表示成有限小數(shù)或無限循環(huán)小數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)(即開不盡方的數(shù))無理數(shù)不能表示成分數(shù)的形式。任何一個無理數(shù),都可以用給定精確度的有理數(shù)來近似地給予表示。有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。每一個實數(shù)都可以用數(shù)軸上的一個點表示,反之,數(shù)軸上的每點又都可以表示一個實數(shù)。(一一對7.實數(shù)的相反數(shù),-8.實數(shù)的絕對值精品文檔歡迎來主頁下載---精品文檔精品文檔歡迎來主頁下載---精品文檔精品文檔歡迎來主頁下載---精品文檔(一)知識目標:1.了解有理數(shù)的運算法則在實數(shù)范圍內(nèi)仍然適用.2.用類比的方法,引入實數(shù)的運算法則、運算律,并能用這些法則,運算律在實數(shù)范圍內(nèi)正確計算.3.正確運用公式(二)能力訓(xùn)練目標:1.讓學(xué)生根據(jù)現(xiàn)有的條件或式子找出它們的共性,進而發(fā)現(xiàn)規(guī)律,培養(yǎng)學(xué)生的鉆研精神和創(chuàng)新能力.2.能用類比的方法去解決問題,找規(guī)律,用舊知識去探索新知識.(三)情感與價值觀目標:時代在進步,科學(xué)在發(fā)展,只靠在學(xué)校積累的知識已遠遠不能適應(yīng)時代的要求,因此在校學(xué)習(xí)期間應(yīng)培養(yǎng)學(xué)生的能力,具備某種能力之后就能應(yīng)付日新月異的新問題.其中類比的學(xué)習(xí)方法就是一種學(xué)習(xí)的能力,本節(jié)課旨在讓學(xué)生通過在有理數(shù)范圍內(nèi)的法則,類比地學(xué)習(xí)在實數(shù)范圍內(nèi)的有關(guān)計算,重要的是培養(yǎng)這種類比學(xué)習(xí)的能力,使得學(xué)生在以后的學(xué)習(xí)和工作中能輕松完成任務(wù).精品文檔歡迎來主頁下載---精品文檔1.用類比的方法,引入實數(shù)的運算法則、運算律,并能在實數(shù)范圍內(nèi)正確進行運算.1.類比的學(xué)習(xí)方法.2.發(fā)現(xiàn)規(guī)律的過程.一.新課導(dǎo)入上節(jié)課我們學(xué)習(xí)了實數(shù)的定義、實數(shù)的兩種分類,還有在實數(shù)范圍內(nèi)如何求相反數(shù)、倒數(shù)、絕對值,它們的求法和在有理數(shù)范圍內(nèi)的求法相同.那么在有理數(shù)范圍內(nèi)的運算法則、運算律等能不能在實數(shù)范圍內(nèi)繼續(xù)用呢?本節(jié)課讓我們來一起進行探究.1.有理數(shù)的運算法則在實數(shù)范圍內(nèi)仍然適用.大家先回憶一下我們在有理數(shù)范圍內(nèi)學(xué)過哪些法則和運算律.(加、減、乘、除運算法則,加法交換律,結(jié)合律,分配律.)下面我們就來驗證一下這些法則和運算律是否在實數(shù)范圍內(nèi)適用.我們知道實數(shù)包括有理數(shù)和無理數(shù),而有理數(shù)不用再考慮,只要對無理數(shù)進行驗證就可以了.所以說明有理數(shù)的運算法則與運算律對實數(shù)仍然適用.下面看一些例題.(4)(2+)2.請同學(xué)們先計算,然后分組討論找出規(guī)律.通過上面計算的結(jié)果,大家認真總結(jié)找出規(guī)律.33精品文檔6.歡迎來主頁下載---精品文檔(一)隨堂練習(xí) (二)補充練習(xí)332.一個直角三角形的兩條直角邊長分別為5cm和45cm,求這個直角三角形的面積.12精品文檔歡迎來主頁下載---精品文檔222(一)知識目標:2.能利用化簡對實數(shù)進行簡單的四則運算.(二)能力訓(xùn)練目標:1.讓學(xué)生能根據(jù)實際情況靈活地運用兩個法則進行有關(guān)實數(shù)的四則運算.2.讓學(xué)生根據(jù)實例進行探索,互相交流合作,培養(yǎng)他們的合作精神和探索能力.(三)情感與價值觀目標:1.通過對法則的逆運用,讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性以及數(shù)學(xué)結(jié)論的確定性.2.能運用實數(shù)的運算解決簡單的實際問題,提高學(xué)生的應(yīng)用意識,發(fā)展學(xué)生解決問題的能力,從中體會數(shù)學(xué)的使用價值.1.兩個法則的逆運用.2.能運用實數(shù)的運算解決簡單的實際問題.靈活地運用法則和逆用法則進行實數(shù)的運算.請大家先回憶一下算術(shù)平方根的定義.問:設(shè)大正方形的邊長為a,小正方形的邊長為b.請同學(xué)們互相討論后得出結(jié)果.問:那么a與b之間有怎樣的倍分關(guān)系呢?請觀察圖中的虛線.(大正方形的面積為小正方形面積的4倍,大正方形的邊長是小正方形邊長的2倍.所以精品文檔歡迎來主頁下載---精品文檔請大家根據(jù)上面法則化簡下列式子.請大家思考一下,剛才這位同學(xué)的步驟反過來推是否成立?即從右往左推(.因為從左到右是等式的推導(dǎo),而從右向左也是等式的推導(dǎo),只不過是反過來推也應(yīng)成立.)并和上節(jié)課的兩個法則相比較,有什么不同嗎?請大家交流后回答.大家能否用式子表示出來?這說明根號里面的數(shù)有一部分移到了根號外面,那么什么數(shù)能往外移呢?它們又具備什么條件呢?也就是說被開方數(shù)中能分解因數(shù).且有些因數(shù)能開出來.這時就需要對其進行化簡.那么像下面的式子叫不叫化簡呢化簡)如果被開方數(shù)中含有分母,要把分子分母同時乘以某一個數(shù),使得分母變成一個能開出來的數(shù),然后把分母開出來,使被開方數(shù)中沒有了分母.這也叫化簡.根據(jù)剛才我們的討論,對于兩種情形可通(.如果被開方數(shù)中含有分母,或者含有開得盡的因數(shù),則可通過逆運算進行化簡.)上節(jié)課和本節(jié)課我們做的工作都是化簡,并且用的是相同的兩個公式,那么究竟什么情況下用一般地,當被開方數(shù)中含有分母或者含有能開得盡的因數(shù)時,用法則的逆運算;當兩個含有根號的數(shù)相乘或相除,它們的被開方數(shù)單獨開不出來,但是通過相乘或相除能出現(xiàn)開得盡的因數(shù)時用法則.精品文檔歡迎來主頁下載---精品文檔例題講解1y11y616EQ\*jc3\*hps36\o\al(\s\up12(x),x)EQ\*jc3\*hps36\o\al(\s\up12(1),2)EQ\*jc3\*hps22\o\al(\s\up12(y2),x3)EQ\*jc3\*hps22\o\al(\s\up12(x4),y2)EQ\*jc3\*hps22\o\al(\s\up12(x2),y2)3+16a2.五.課后作業(yè)(一)知識目標:2.重點內(nèi)容歸納.(1)數(shù)怎么又不夠用了,引出了無理數(shù).(2)有理數(shù)與無理數(shù)的聯(lián)系與區(qū)別.(3)算術(shù)平方根、平方根的定義,會求正數(shù)的算術(shù)平方根和平方根.(4)立方根,開立方的定義,會求一個數(shù)的立方根.(5)估算的方法.(6)用計算器開方.(7)實數(shù)的定義,實數(shù)的運算法則和運算律.(二)能力訓(xùn)練目標:1.熟練掌握本章的知識網(wǎng)絡(luò)結(jié)構(gòu).2.理解無理數(shù),實數(shù),算術(shù)平方根,平方根,立方根,開立方的定義.5.掌握估算的方法.6.正確運用實數(shù)的運算法則和運算律.(三)情感與價值觀目標:通過本章內(nèi)容的小結(jié)與復(fù)習(xí)培養(yǎng)學(xué)生學(xué)會歸納,整理所學(xué)知識的能力,從而激發(fā)學(xué)生的學(xué)習(xí)興精品文檔歡迎來主頁下載---精品文檔趣、求知欲望,并培養(yǎng)良好的學(xué)習(xí)品質(zhì).本章知識的網(wǎng)絡(luò)結(jié)構(gòu),知識間的相互關(guān)系.知識的運用.本章的內(nèi)容已全部學(xué)完.請同學(xué)們回憶并歸納本章所學(xué)的知識.(本章的內(nèi)容有:數(shù)怎么又不夠用了;平方根,算術(shù)平方根的定義及求法;立方根的定義及求法;估算的方法,用計算器開方,實數(shù)的概念,實數(shù)的運算法則和運算律.)本節(jié)課將對本章知識內(nèi)容進行系統(tǒng)歸納,總結(jié).(1)無理數(shù)的引入及它與有理數(shù)的聯(lián)系與區(qū)別.a既不是整數(shù),也不是分數(shù),所以a不是有理數(shù),是無理數(shù),就引入了無理數(shù)).(2)算術(shù)平方根與平方根的聯(lián)系與區(qū)別.(1)平方根包含算術(shù)平方根,算術(shù)平方根是平方根的一種.(2)存在條件相同:平方根與算術(shù)平方根都是只有非負數(shù)才有.(3)0的平方根,算術(shù)平方根都是0.區(qū)別是:(1)從定義看不同.(2)個數(shù)不同:一個正數(shù)有兩個平方根,而一個正數(shù)的算術(shù)平方根只有正數(shù)的平方根一正一負,互為相反數(shù);正數(shù)的算術(shù)平方根只有一個.(3)立方根的有關(guān)知識.若x3=a,則x叫a的立方根.立方根的性質(zhì)有:一個正數(shù)的立方根是一個正數(shù).一個負數(shù)有一個負的立方根,零的立方根為零.立方根、平方根、算術(shù)平方根都是通過開方運算得到的,開方運算和乘方運算是互為逆運算.(4)估算.是公園有多寬,也就是估算.估算就是利用乘方運算來進行的.估算的步驟大致為:(1)估計是幾位數(shù);(2)確定最高位上的數(shù)字(如百位);(3)確定下一位上的數(shù)字(如十位);(4)依次類推,直到確定出個位上的數(shù)或者按要求精確到小數(shù)點后的某一位.(5)實數(shù)的定義及實數(shù)的運算法則和運算律.a.有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù).b.實數(shù)的分類有:(1)按定義分EQ\*jc3\*hps27\o\al(\s\up13(零),負有理數(shù))EQ\*jc3\*hps27\o\al(\s\up2147483640([負整數(shù)),l負分數(shù))EQ\*jc3\*hps32\o\al(\s\up13(零),負實數(shù))c.實數(shù)大小的比較精品文檔歡迎來主頁下載---精品文檔在數(shù)軸上表示的兩個實數(shù),右邊的數(shù)總比左邊的數(shù)大.d.實數(shù)和數(shù)軸上點的對應(yīng)關(guān)系.實數(shù)和數(shù)軸上的點是一一對應(yīng)的關(guān)系.e.實數(shù)的幾個概念.(1)相反數(shù);(2)倒數(shù);(3)絕對值都和有理數(shù)范圍內(nèi)的概念相同.f.實數(shù)的運算法則和運算律.2.知識點的運用(6)無理數(shù)就是開方開不盡的數(shù);(7)兩個無理數(shù)的和還是無[例2]把下列各數(shù)寫入相應(yīng)的集合中.2(1)正數(shù)集合{…};(2)負數(shù)集合{…};(3)有理數(shù)集合{…};(4)無理數(shù)集合{…}.注:正、負數(shù)集合是從數(shù)的符號來考慮的;有理數(shù)、無理數(shù)集合是從實數(shù)的分類來考慮的,正、負數(shù)可能是有理數(shù)或無理數(shù),有理數(shù),無理數(shù)包含正、負有理數(shù),無理數(shù).[例3]你會估算嗎?請估算下列各組數(shù)的大小,并作比較.注:這個題主要是區(qū)分算術(shù)平方根與平方根的概念而設(shè)置的.EQ\*jc3\*hps26\o\al(\s\up8(1),2)EQ\*jc3\*hps26\o\al(\s\up8(1),8)5-2;(2)331173.如下圖所示,15只空桶(每只油桶底面的直徑均為50厘米)堆在一起,要給它們蓋一個遮雨棚,遮雨棚起碼要多高?解:設(shè)油桶底面的直徑為d.由圖根據(jù)勾股定理得(4d)2-(2d)2精品文檔歡迎來主頁下載---精品文檔①經(jīng)歷觀察、分析、操作、欣賞以及抽象、概括等過程,經(jīng)歷探索圖形平移基本性質(zhì)的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。②通過具體實例認識平移,理解平移的基本內(nèi)涵,理解平移前后兩個圖形對應(yīng)點連線平行且相等、對應(yīng)線段和對應(yīng)角分別相等的性質(zhì)。②通過欣賞生活中平移圖形與學(xué)生自己設(shè)計平移圖案,使學(xué)生感受數(shù)學(xué)美,體會美的價值所在,進教學(xué)重點和難點:1、教學(xué)重點:探索圖形平移的主要特征和基本性質(zhì)。2、教學(xué)難點:從生活中的平移現(xiàn)象中概括出平移的特征。采用自主探究式的教學(xué)方法,本著貫徹啟發(fā)性、直觀性、理論聯(lián)系實際的教學(xué)原則,體現(xiàn)以教師為主導(dǎo),學(xué)生為主體的教學(xué)思想,確定本節(jié)課的教學(xué)方法如下:①采用引導(dǎo)發(fā)現(xiàn)法:逐步呈現(xiàn)教學(xué)信息,突出教師的主導(dǎo)作用和學(xué)生的主體作用;突出獨立性、又體現(xiàn)合作性。通過學(xué)生自主學(xué)習(xí)、交流,師生互動,讓學(xué)生自主獲取知識。②創(chuàng)設(shè)問題情境:營造和諧的教學(xué)氛圍,引導(dǎo)學(xué)生的學(xué)習(xí)興趣,激發(fā)求知欲望。③講練結(jié)合、步步設(shè)疑、逐漸深入、引導(dǎo)猜想、歸納總結(jié)、實驗驗證的探究式思維訓(xùn)練。觀察——分析——探索——概括多媒體課件教學(xué)教師活動環(huán)節(jié)教師通過多媒體展示現(xiàn)實生一、(1)電視機在傳送帶上移動的過問題(2)手扶電梯上人的移動的過學(xué)生(1)你能發(fā)現(xiàn)傳送帶上的電學(xué)生活動學(xué)生觀察多媒體展示的設(shè)計意圖從現(xiàn)實生活中的具體實例中抽象出數(shù)學(xué)問思考并進行探精品文檔歡迎來主頁下載---精品文檔學(xué)習(xí)視機、手扶電梯上的人在平移前興趣后什么沒有改變,什么發(fā)生了改學(xué)會從實際問題中抽象出數(shù)學(xué)生自由發(fā)言,各抒己平移前后兩個圖形的形狀和大小沒有改變,位置發(fā)生學(xué)會從實際問題中抽象出數(shù)學(xué)生自由發(fā)言,各抒己平移前后兩個圖形的形狀和大小沒有改變,位置發(fā)生(3)如果把移動前后的同一臺電視機屏幕分別記為四邊形和四邊形(多媒體演示書上第58頁的圖3-2引入課題:生活中的平移根據(jù)上述分析,你能說明什學(xué)生分組進行交流、討通過討論,強化對定義的理學(xué)生分組進行交流、討通過討論,強化對定義的理平移定義:在平面內(nèi),將一個圖形沿某個方向移動一定的距二、離,這樣的圖形運動稱為平移。引入平移不改變圖形的形狀和大小。課題同學(xué)們通過剛才的觀察,總新知改變了,但形狀和大小沒有改前后對應(yīng)點、對應(yīng)線段以及對應(yīng)角之間在做怎樣的變化。學(xué)生觀察多媒體中四邊形平移的圖形,證實剛才探索探索平移的性質(zhì),培養(yǎng)學(xué)生觀察、分析、歸學(xué)生觀察多媒體中四邊形平移的圖形,證實剛才探索探索平移的性質(zhì),培養(yǎng)學(xué)生觀察、分析、歸納、猜想的能力教師要讓學(xué)生充分發(fā)表自己意見,說出他們同時要給予激勵(2)圖中每對對應(yīng)線段之間有怎(3)圖中有哪些相等的線段、相讓學(xué)生歸納總結(jié),教師學(xué)生通過觀察、測經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線學(xué)生通過觀察、測精品文檔歡迎來主頁下載---精品文檔性評價,鼓勵學(xué)性評價,鼓勵學(xué)“對應(yīng)點所連線段”兩個方面找平行且相等的線培養(yǎng)學(xué)生自己解決問題的能學(xué)生觀察、思考、相互討論,然后叫學(xué)生回答。例題△ABE沿講解射線學(xué)生觀察、思考、相互討論,然后叫學(xué)生回答。的方向平移一定距離后成為△CDF。找出圖中存在的平行且相等的三條線段和一組全等三角形。第一題由學(xué)生獨立完成。展示(3456)中的哪個圖案自我如果不限定“通過平移圖案學(xué)生相互交流,讓所有的學(xué)生都參與到問題的討論中。通過訓(xùn)練,學(xué)生相互交流,讓所有的學(xué)生都參與到問題的討論中。通過訓(xùn)練,強化對平移性質(zhì)為什么(6)不是(1)平移得到的?你還能從這幾只“向日圖中的四個小三角形都是等邊長為F討論解題思路,獨立寫出討論解題思路,獨立寫出AE結(jié)合平移的性質(zhì)及平行線的性質(zhì),使學(xué)生前后所學(xué)知識得到過結(jié)合平移的性質(zhì)及平行線的性質(zhì),使學(xué)生前后所學(xué)知識得到三角形嗎?若能,請畫出平移的應(yīng)用圖案欣賞:將搜集來的一些圖案精品文檔歡迎來主頁下載---精品文檔通過多媒體展示出來,讓學(xué)生感受“平移”給我們帶來的美。使學(xué)生能在有趣的圖形中學(xué)習(xí)數(shù)學(xué)知識,充分感受到美來源于生活,同時數(shù)評價通過多媒體展示出來,讓學(xué)生感受“平移”給我們帶來的美。使學(xué)生能在有趣的圖形中學(xué)習(xí)數(shù)學(xué)知識,充分感受到美來源于生活,同時數(shù)鏈接知識歸納鏈接知識歸納小結(jié)六、布置作業(yè)小結(jié)本節(jié)課所學(xué)的內(nèi)容。組織學(xué)生小結(jié)這節(jié)課所學(xué)的見作業(yè)本七、課后反思1.通過欣賞生活中平移圖形與學(xué)生自己設(shè)計平移圖案,使學(xué)生感受數(shù)學(xué)美,體會美的價值所在,進而追求美并創(chuàng)造美。2.通過訓(xùn)練,強化對平移性質(zhì)的理解與運用,培養(yǎng)學(xué)生自己解決問題的能力。(一)知識目標1.簡單的平移作圖.2.確定一個圖形平移后的位置的條件.(二)能力訓(xùn)練目標1.經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力.2.能按要求作出簡單平面圖形平移后的圖形.(三)情感與價值觀目標經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,增強學(xué)生對圖形美欣賞的意識,培養(yǎng)其審美觀念.能按要求作出簡單平面圖形平移后的圖形.簡單平面圖形平移后的圖形的作法.精品文檔歡迎來主頁下載---精品文檔講、練結(jié)合法.一、巧設(shè)情景問題,引入課題[師]通過上節(jié)課的學(xué)習(xí),我們知道了生活中的許多現(xiàn)象屬于平移,哪位同學(xué)能說一下什么是[生]在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移,平移不改變圖形的形狀和大小.經(jīng)過平移,對應(yīng)線段,對應(yīng)角分別相等,對應(yīng)點所連的線段平行且相等.[師]很好,了解了平移的涵義及其基本性質(zhì)后,能否把一些簡單的平面圖形進行平移呢?我們這節(jié)課就來研究:簡單的平移作圖.二、講授新課[師]下面來看大屏幕(出示投影片§3.2.1A)如圖,經(jīng)過平移,線段AB的端點A移到了點D,你能作出線段AB平移后的圖形嗎?與同伴交流.[生甲]因為經(jīng)過平移,線段AB的端點A移到了點D,所以點A與點D是對應(yīng)點;又因為對應(yīng)點所連的線段平行且相等,所以連結(jié)AD,然后過點B作線段BC與線段AD平行且相等,最后連結(jié)CD,則線段CD就是線段AB平移后的圖形.[生乙]因為平移不改變圖形的形狀和大小,所以在作線段AB平移后的圖形時,可過點D作DC∥AB,且DC=AB,則線段DC就是線段AB平移后的圖形.[師]很好,這個題實際是平移的基本性質(zhì)的直接應(yīng)用.由此可知:按要求進行平移一些簡單的平面圖形時,一般都是應(yīng)用平移的基本性質(zhì)進行的.下面我們通過例題來進一步說明如何平移一些簡單的平面圖形.[例1]經(jīng)過平移,△ABC的頂點A移到了點D,(如圖),作出平移后的三角形.分析:設(shè)頂點B、C分別平移到了點E、F,根據(jù)“經(jīng)過平移,對應(yīng)點所連的線段平行且相等”,可精品文檔歡迎來主頁下載---精品文檔知線段BE、CF與AD平行且相等.注意:作圖時可用尺規(guī)進行作圖,也可用三角板與直尺進行作圖.解:如上圖,過點B、C分別作線段BE、CF,使得它們與線段AD平行并且相等,連結(jié)DE、DF、EF,則△DEF就是△ABC平移后的圖形.[師]同學(xué)們想一想,議一議(出示投影片§3.2.1C)[生甲]過點D分別作出與AB、AC平行且相等的線段DE、DF,連接EF,則△DEF就是所要求作的三角形.畫弧,兩弧交于F點,連結(jié)EF、DF,則△DEF就是所要求作的三角形.[師]同學(xué)們找到了“△ABC平移后的圖形△DEF的其他作法”.很好,現(xiàn)在“大家來想一想,分組討論. [生甲]確定一個圖形平移后的位置,除需要原來的位置外,還需要平移的距離.[生乙]還需要方向,要弄清一個圖形是往左平移還是往右平移,是往上平移,還是往下平移.[師]完全正確,這就是確定一個圖形平移后的位置的條件:(1)圖形原來所在的位置.(2)圖形平移的方向.(3)圖形平移的距離.接下來我們來平移一個圖形(出示投影片§3.2.1E)精品文檔歡迎來主頁下載---精品文檔[例2]如圖,將字母A按箭頭所指的方向平移3cm,作出平移后的圖形.[師生共析]平移字母A的條件:字母A的位置,平移的方向——箭頭所指,平移的距離——3cm,三個條件都具備,所以可以確定字母A平移后的位置.那如何作圖呢?一般情況下,畫圖時,先確定點,然后就可以作出所要求的圖形.因此本題可以在原圖形上找?guī)讉€能反映本圖形的關(guān)鍵的點,根據(jù)“經(jīng)過平移對應(yīng)點所連的線段平行且相等”,確定出這幾個關(guān)鍵點的對應(yīng)點,然后按原來的方式連接,即可得到字母A平移后的圖形.解:在字母A上,找出關(guān)鍵的5個點(如圖所示),分別過這5個點按箭頭所指的方向作5條長3cm的線段,將所作線段的另5個端點按原來的方式連接,即可得到字母A平移后的圖形.[師]在這個例題的解題過程中,通過確定幾個關(guān)鍵點平移后的位置,得到字母A平移后的圖形,這是一種“以局部帶整體”的平移作圖方法,同學(xué)們要掌握.下面通過練習(xí)來熟悉這種“以局部帶整體”的平移作圖方法.三、課堂練習(xí)1.將圖中的字母沿水平方向向右平移3cm,作出平移后的圖形.作4條長3cm的線段,將所作的線段的另4個端點按原來的方式連接,即得到字母N平移后的圖形.(二)試一試1.圖中的窗欞輪廓是由一個半圓和一個矩形組成的,試作出這個圖案向左平移6格后的圖案.解:分別確定矩形的四個頂點,半圓的圓心、半圓與斜線的兩個交點向左平移6格后的位置(如上圖),畫半圓(以“圓心”平移后的位置為圓心,以6個格的長為直徑),連線即可得到窗欞輪廓向左平移6格后的圖形.精品文檔歡迎來主頁下載---精品文檔本節(jié)課通過平移作圖進一步熟悉理解了平移的基本性質(zhì),并能應(yīng)用平移性質(zhì)作出一些簡單平面圖形平移后的圖形,了解了“以局部帶整體”的平移作圖方法.(一)知識目標圖形之間的平移關(guān)系.(二)能力訓(xùn)練目標1.經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作等過程,發(fā)展學(xué)生的審美能力.2.能夠探索圖形之間的平移關(guān)系.(三)情感與價值觀目標1.通過學(xué)生對圖形的觀察、分析、欣賞,以及親手拼擺等過程,培養(yǎng)學(xué)生對圖形欣賞的意識.2.在探索圖形之間的平移關(guān)系的過程中,使學(xué)生認識和欣賞平移在現(xiàn)實生活中的應(yīng)用.探索圖形之間的平移關(guān)系.探索圖形之間的平移關(guān)系.探索、發(fā)現(xiàn)法.一、巧設(shè)情景問題,引入課題[師]生活中經(jīng)常見到一些美麗的圖案(出示投影,放圖片:課本P41~P42的圖;也可另外找一些平移圖形的圖案),這些圖案都是由基本圖形平移組成的,那么怎樣平移基本圖形就能得到美麗的圖案呢?這節(jié)課我們就來探索一些圖案中的圖形之間的平移關(guān)系.二、講授新課[師]現(xiàn)在大家來看圖案1(出示投影圖片:課本P41的第一幅);觀察圖案,并回答.(出示投影片[生甲](1)圖案中的六條小狗的形狀、大小完全一樣,只是它們所處的位置不同,由此可知:這個圖案可以通過平移“基本圖案”得到.離等于左右相鄰(或上下)兩只小狗之間的水平距離(或垂直距離).平移的距離等于左右相鄰兩只小狗之間的水平距離.[生?。葸@個圖案也可把最左邊的上下的“兩只小狗”或最左邊上下的“兩只小狗”看成“基本圖案”,通過向右(或向左)依次平移得到,平移的距離等于圖案中的左右相鄰兩只小狗的水平距離.[生戊]這個圖案也可把水平的“三只小狗”看成是“基本圖案通過向下(或向上)平移得到,平移的距離等于上下垂直的兩只小狗的垂直距離.[師]同學(xué)們討論得非常精彩,(邊敘述邊在電腦上演示平移過程),這個圖案既可以把一只小狗看做“基本圖案”進行平移得到,又可以把兩只小狗、三只小狗看做“基本圖案”進行平移得到整個圖案,在這些平移過程中,只是平移的距離不同而已.精品文檔歡迎來主頁下載---精品文檔接下來,大家想一想第(3)問.移不改變圖形的形狀、大小,而改變圖形的位置.[師]很好,大家看屏幕(用電腦動畫再次演示平移過程).從平移的過程中,進一步說明了平移的特征:平移不改變圖形的形狀、大小,只改變圖形的位置.了解了平移的特征后,大家分組來動手做一做.(出示投影片§3.2.2B)在下圖中,左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?自己動手做做看,你能得到(學(xué)生分組后,教師把預(yù)先剪好的大小相同的正六邊形分發(fā)下來,讓學(xué)生進行實際拼擺,老師巡視指導(dǎo))[生]我把一個正六邊形經(jīng)過連續(xù)平移,就可以得到右圖的圖案.[師]同學(xué)們通過拼擺,進一步理解了平移的基本內(nèi)涵,接下來大家想一想,與同伴議一議下面的兩個圖案(出示投影片§3.2.2C).[生甲](1)先把左圖沿上下方向平移,再沿左右方向平移便可得到右圖.[生乙]也可先把左圖沿左右方向平移,再沿上下方向平移得到右圖.到如圖所示的圖案.[生?。萑绻严噜彽膬芍徊煌奶禊Z看做一個組合,那么“基本圖案”可以是一個組合,兩個組合……,直到所有的天鵝.[生戊]如果不考慮顏色時,可以把同一行的天鵝看做是“基本圖案”,通過上下平移就可得到如圖所示的圖案.[生己]如果不考慮顏色時,也可以把同一列的三只天鵝看做“基本圖案”,通過左右平移就可以得到如圖所示的圖案.[師]很好,這是一個通過平移得到的復(fù)合圖案,圖案的許多部分可以通過平移而相互得到。接下來我們通過練習(xí)進一步熟悉圖形之間的平移關(guān)系.三、課堂練習(xí)1.分析奧運五環(huán)旗圖案形成的過程(不考慮圖案的顏色)解:在不考慮圖案顏色的情況下,五個環(huán)之間可以通過平移而相互得到.2.如圖,在正六邊形中剪去一個與其邊長相同的正三角形,并將其平移到左邊,形成一個新的圖精品文檔歡迎來主頁下載---精品文檔案.用這個圖案能否得到類似于圖3—9右圖的圖案呢?與同伴交流.解:可以得到類似于圖3—9右圖的圖案.如下圖.本節(jié)課我們探索了圖案中圖形之間的平移關(guān)系,了解了每個圖案由于“基本圖案”選取的不一樣,則平移關(guān)系也不一樣,尤其是一些復(fù)合圖案,它的許多部分可以通過平移而相互得到.1.經(jīng)歷對生活中的旋轉(zhuǎn)現(xiàn)象有關(guān)圖形進行觀察、分析、欣賞等過程培養(yǎng)學(xué)生初步的審美能力,增強對圖形欣賞的意識,培養(yǎng)創(chuàng)新能力。2.通過具體實例認識旋轉(zhuǎn),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等、對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì)。3.培養(yǎng)學(xué)生合作學(xué)習(xí),探索學(xué)習(xí)的意識,追求成功的精神,增強學(xué)生自我價值感。重點:對生活中的旋轉(zhuǎn)現(xiàn)象作數(shù)學(xué)上的分析研究,旋轉(zhuǎn)定義,旋轉(zhuǎn)的性質(zhì)。難點:對旋轉(zhuǎn)現(xiàn)象的分析研究,旋轉(zhuǎn)的性質(zhì)的探索。在十分寬松的氛圍中,欣賞多媒體課件,學(xué)生根據(jù)自己的思考,自主探究發(fā)現(xiàn),通過合作交流互補的協(xié)作學(xué)習(xí),解決本課的重難點。投影儀、電腦、時鐘、小風(fēng)車(一)尋找生活中的旋轉(zhuǎn)現(xiàn)象我們生活在一個充滿旋轉(zhuǎn)的世界里,旋轉(zhuǎn)這種現(xiàn)象司空見慣,作用非凡,而其中包含著豐富的數(shù)學(xué)知識,你能舉出生活中的實例嗎?在學(xué)生充分收集、觀察、分析、欣賞生活中旋轉(zhuǎn)實例的基礎(chǔ)上,提出下列問題:1.在大家搜索到的旋轉(zhuǎn)實例中,哪些部位作旋轉(zhuǎn)?它們有什么共同特征?學(xué)生交流、感知并形成共識,教師給出旋轉(zhuǎn)定義:平面內(nèi),將一個圖形繞一個定點沿著某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。旋轉(zhuǎn)不改變圖形的大小和形狀。精品文檔歡迎來主頁下載---精品文檔(二)小組活動——探索旋轉(zhuǎn)的基本規(guī)律教師引導(dǎo)學(xué)生對旋轉(zhuǎn)現(xiàn)象進行數(shù)學(xué)上的分析。1.學(xué)生觀察教學(xué)課件演示,思考,交流討論。DCDCAF經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞著旋轉(zhuǎn)中心沿著相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。(四)試一試——探索圖形之間的旋轉(zhuǎn)關(guān)系利用課件分別展示,如圖:分析圖形中的教師明析:圖形之間還存在著旋轉(zhuǎn)關(guān)系,一些較復(fù)雜的圖案,可看作是由“基本圖案”通過旋轉(zhuǎn)得到的,而基本圖案往往不是唯一,旋轉(zhuǎn)的次數(shù)和每次轉(zhuǎn)動的角度都不是相同。讓學(xué)生瀏覽欣賞一些優(yōu)秀FLASH作品,感受生活中的美。(六)創(chuàng)新設(shè)計——用旋轉(zhuǎn)知識設(shè)計圖案2.你能運用今天學(xué)到的旋轉(zhuǎn)的知識,設(shè)計出漂亮的圖案學(xué)生互相交流討論,初步形成方案。六、教后隨筆:通過本節(jié)課的教學(xué),同學(xué)們學(xué)習(xí)數(shù)學(xué)興趣有了很大的改觀,尤其重視數(shù)學(xué)思想方法,和數(shù)學(xué)精神的學(xué)習(xí)鍛煉。但是如此教學(xué),課堂教學(xué)時間顯得有些倉促,需加強課堂節(jié)奏。1.簡單平面圖形旋轉(zhuǎn)后的圖形的作法.2.確定一個三角形旋轉(zhuǎn)后的位置的條件.(二)能力訓(xùn)練要求1.對具有旋轉(zhuǎn)特征的圖形進行觀察、分析、畫圖和動手操作等過程,掌握畫圖技能.2.能夠按要求作出簡單平面圖形旋轉(zhuǎn)后的圖形.(三)情感與價值觀要求1.通過畫圖,進一步培養(yǎng)學(xué)生的動手操作能力.2.對具有旋轉(zhuǎn)特征的圖形進行觀察、分析、畫圖過程中,進一步發(fā)展學(xué)生的審美觀念.精品文檔歡迎來主頁下載---精品文檔簡單平面圖形旋轉(zhuǎn)后的圖形的作法.簡單平面圖形旋轉(zhuǎn)后的圖形的作法.一.巧設(shè)情景問題,引入課題上節(jié)課我們探討了生活中的旋轉(zhuǎn),那什么樣的運動是旋轉(zhuǎn)呢?答:在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).旋轉(zhuǎn)不改變圖形的大小和形狀.答:旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等;任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所組成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.大家來看一面小旗子(出示小旗子,然后一邊演示一邊敘述),把這面小旗子繞旗桿底端旋后,這時小旗子的位置發(fā)生了變化,形成了新的圖案,你能把這時的圖案畫出來嗎?在原圖上找了四個點,即O點、A點、B點、C點,如圖(教師把該生所畫的圖在投影上放影)這四個點可以是能表示這面小旗子的關(guān)鍵點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人汽車租賃協(xié)議范本(含保險條款)4篇
- 二零二五年度新型材料抹灰分包勞務(wù)合同4篇
- 二零二五年度生物科技研發(fā)合作合同范本模板4篇
- 2025年環(huán)保打印機租賃與節(jié)能減排服務(wù)協(xié)議4篇
- 2025年樹林生態(tài)保護與可持續(xù)發(fā)展承包合同范本3篇
- 2025年教育機構(gòu)VI設(shè)計及校園文化手冊合同3篇
- 2025年度個人租賃公寓水電費結(jié)算合同4篇
- 2025年度漁業(yè)科技示范園承包合同3篇
- 2025年度綠色環(huán)保個人勞務(wù)派遣合同范本3篇
- 2022年安全生產(chǎn)月安全宣傳教育活動方案
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計與授權(quán)使用3篇
- 2024年08月云南省農(nóng)村信用社秋季校園招考750名工作人員筆試歷年參考題庫附帶答案詳解
- 防詐騙安全知識培訓(xùn)課件
- 心肺復(fù)蘇課件2024
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2024-2025學(xué)年江蘇省南京市高二上冊期末數(shù)學(xué)檢測試卷(含解析)
- 四川省名校2025屆高三第二次模擬考試英語試卷含解析
- 《城鎮(zhèn)燃氣領(lǐng)域重大隱患判定指導(dǎo)手冊》專題培訓(xùn)
- 湖南財政經(jīng)濟學(xué)院專升本管理學(xué)真題
- 考研有機化學(xué)重點
- 全國身份證前六位、區(qū)號、郵編-編碼大全
評論
0/150
提交評論