安徽省滁州市南譙區(qū)市級名校2022年中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
安徽省滁州市南譙區(qū)市級名校2022年中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
安徽省滁州市南譙區(qū)市級名校2022年中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
安徽省滁州市南譙區(qū)市級名校2022年中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
安徽省滁州市南譙區(qū)市級名校2022年中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省滁州市南譙區(qū)市級名校2022年中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.﹣2018的相反數(shù)是()A.﹣2018 B.2018 C.±2018 D.﹣2.如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.3.下列生態(tài)環(huán)保標(biāo)志中,是中心對稱圖形的是()A.B.C.D.4.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設(shè)該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4405.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣16.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π7.甲、乙、丙、丁四名射擊運動員進(jìn)行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績?nèi)鐖D所示,丙、丁二人的成績?nèi)绫硭荆蕴幻\動員,從平均數(shù)和方差兩個因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁8.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.9.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.?dāng)?shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣1010.下列圖案中,是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.12.為了綠化校園,30名學(xué)生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設(shè)男生有x人,女生有y人,根據(jù)題意,所列方程組正確的是()A. B. C. D.13.如圖,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分線與AC交于點D,與AB交于點E,連接BD.若AD=14,則BC的長為_____.14.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標(biāo)為5,BE=3DE,則k的值為______.15.如圖,在△ABC中,DE∥BC,,則=_____.16.關(guān)于x的方程kx2﹣(2k+1)x+k+2=0有實數(shù)根,則k的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)解方程:=1.18.(8分)班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進(jìn)行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:調(diào)查了________名學(xué)生;補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;學(xué)校將舉辦運動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.19.(8分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41420.(8分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標(biāo)為(-3,0).(1)求點B的坐標(biāo);(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標(biāo);②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.21.(8分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標(biāo)為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.22.(10分)在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點B的坐標(biāo)為(0,4),BC平分∠ABO交x軸于點C(2,0).點P是線段AB上一個動點(點P不與點A,B重合),過點P作AB的垂線分別與x軸交于點D,與y軸交于點E,DF平分∠PDO交y軸于點F.設(shè)點D的橫坐標(biāo)為t.(1)如圖1,當(dāng)0<t<2時,求證:DF∥CB;(2)當(dāng)t<0時,在圖2中補全圖形,判斷直線DF與CB的位置關(guān)系,并證明你的結(jié)論;(3)若點M的坐標(biāo)為(4,-1),在點P運動的過程中,當(dāng)△MCE的面積等于△BCO面積的倍時,直接寫出此時點E的坐標(biāo).23.(12分)在平面直角坐標(biāo)系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A′OB′,點A、B旋轉(zhuǎn)后的對應(yīng)點為A′、B′,記旋轉(zhuǎn)角為α.(I)如圖1,若α=30°,求點B′的坐標(biāo);(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).24.如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:只有符號不同的兩個數(shù)叫做互為相反數(shù).詳解:-1的相反數(shù)是1.故選:B.點睛:本題主要考查的是相反數(shù)的定義,掌握相反數(shù)的定義是解題的關(guān)鍵.2、D【解析】

如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.3、B【解析】試題分析:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【考點】中心對稱圖形.4、A【解析】

根據(jù)題意可以列出相應(yīng)的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系進(jìn)行列方程.5、B【解析】

根據(jù)相反數(shù)的的定義解答即可.【詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【點睛】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關(guān)鍵.6、C【解析】

根據(jù)題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.7、D【解析】

求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰丁.故選D.【點睛】本題考查方差、平均數(shù)、折線圖等知識,解題的關(guān)鍵是記住平均數(shù)、方差的公式.8、C【解析】分析:細(xì)心觀察圖中幾何體中正方體擺放的位置,根據(jù)左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學(xué)生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學(xué)生易將三種視圖混淆而錯誤的選其它選項.9、C【解析】

本題根據(jù)科學(xué)記數(shù)法進(jìn)行計算.【詳解】因為科學(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學(xué)記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學(xué)記數(shù)法,熟練掌握科學(xué)記數(shù)法是本題解題的關(guān)鍵.10、B【解析】

根據(jù)軸對稱圖形的定義,逐一進(jìn)行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點睛】本題考查的是軸對稱圖形的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【點睛】本題考查了菱形的性質(zhì),解直角三角形,熟練運用菱形性質(zhì)解決問題是本題的關(guān)鍵.12、A【解析】

該班男生有x人,女生有y人.根據(jù)題意得:,故選D.考點:由實際問題抽象出二元一次方程組.13、1【解析】解:∵DE是AB的垂直平分線,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案為1.點睛:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),30°角所對的直角邊等于斜邊的一半的性質(zhì),熟記性質(zhì)是解答本題的關(guān)鍵.14、【解析】

過點D作DF⊥BC于點F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標(biāo)為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設(shè)點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標(biāo)特征,菱形的性質(zhì),勾股定理,求出DE的長度是本題的關(guān)鍵.15、【解析】

先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關(guān)鍵.16、k≤.【解析】

分k=1及k≠1兩種情況考慮:當(dāng)k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當(dāng)k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當(dāng)k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關(guān)鍵.三、解答題(共8題,共72分)17、x=1【解析】

方程兩邊同乘轉(zhuǎn)化為整式方程,解整式方程后進(jìn)行檢驗即可得.【詳解】解:方程兩邊同乘得:,整理,得,解這個方程得,,經(jīng)檢驗,是增根,舍去,所以,原方程的根是.【點睛】本題考查了解分式方程,解分式方程的關(guān)鍵是方程兩邊同乘分母的最簡公分母化為整式方程然后求解,注意要進(jìn)行檢驗.18、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.19、新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【解析】

根據(jù)題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進(jìn)而求出AB的長.【詳解】解:如圖,作CD⊥AB于點D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【點睛】本題考查了坡度坡角問題,正確構(gòu)建直角三角形再求出BD的長是解題的關(guān)鍵.20、(1)點B的坐標(biāo)為(1,0).(2)①點P的坐標(biāo)為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】

(1)由拋物線的對稱性直接得點B的坐標(biāo).(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標(biāo),得到,設(shè)出點P的坐標(biāo),根據(jù)列式求解即可求得點P的坐標(biāo).②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設(shè)點Q的坐標(biāo)為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標(biāo)為(q,q2+2q-3),從而線段QD等于兩點縱坐標(biāo)之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關(guān)于對稱軸對稱,且A點的坐標(biāo)為(-3,0),∴點B的坐標(biāo)為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標(biāo)為(0,-3).∴OB=1,OC=3.∴.設(shè)點P的坐標(biāo)為(p,p2+2p-3),則.∵,∴,解得.當(dāng)時;當(dāng)時,,∴點P的坐標(biāo)為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點A,C的坐標(biāo)代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設(shè)點Q的坐標(biāo)為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標(biāo)為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.21、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標(biāo)為(m+2,1a+2m?2),設(shè)BD=t,則點C的坐標(biāo)為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m?2,即m<2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m?2≤m≤2m?2,即2≤m≤2時,x=m時y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當(dāng)m<2m?2,即m>2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點坐標(biāo)為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點C作直線AB的垂線,交線段AB的延長線于點D,如圖所示,∵AB∥x軸,且AB=1,∴點B的坐標(biāo)為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設(shè)BD=t,則CD=t,∴點C的坐標(biāo)為(m+2+t,1a+2m﹣2﹣t),∵點C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當(dāng)m>2m﹣2,即m<2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當(dāng)2m﹣2≤m≤2m﹣2,即2≤m≤2時,有2m﹣2=2,解得:m=;③當(dāng)m<2m﹣2,即m>2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點睛:本題考查了二次函數(shù)解析式的三種形式、二次函數(shù)圖象上點的坐標(biāo)特征、等腰直角三角形、解一元二次方程以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)利用配方法將二次函數(shù)解析式變形為頂點式;(2)利用等腰直角三角形的性質(zhì)找出點C的坐標(biāo);(3)分m<2、2≤m≤2及m>2三種情況考慮.22、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】

(1)求出∠PBO+∠PDO=180°,根據(jù)角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據(jù)平行線的性質(zhì)得出即可;

(2)求出∠ABO=∠PDA,根據(jù)角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據(jù)垂直定義得出即可;

(3)分為兩種情況:根據(jù)三角形面積公式求出即可.【詳解】(1)證明:如圖1.

∵在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點B的坐標(biāo)為(0,4),

∴∠AOB=90°.

∵DP⊥AB于點P,

∴∠DPB=90°,

∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,

∴∠PBO+∠PDO=180°,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠PBO,∠ODF=∠PDO,

∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,

∵在△FDO中,∠OFD+∠ODF=90°,

∴∠CBO=∠DFO,

∴DF∥CB.

(2)直線DF與CB的位置關(guān)系是:DF⊥CB,

證明:延長DF交CB于點Q,如圖2,

∵在△ABO中,∠AOB=90°,

∴∠BAO+∠ABO=90°,

∵在△APD中,∠APD=90°,

∴∠PAD+∠PDA=90°,

∴∠ABO=∠PDA,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠ABO,∠CDQ=∠PDO,

∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,

∴∠CDQ+∠DCQ=90°,

∴在△QCD中,∠CQD=90°,

∴DF⊥CB.

(3)解:過M作MN⊥y軸于N,

∵M(jìn)(4,-1),

∴MN=4,ON=1,

當(dāng)E在y軸的正半軸上時,如圖3,

∵△MCE的面積等于△BCO面積的倍時,

∴×2×OE+×(2+4)×1-×4×(1+OE)=×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論