安徽省蒙城重點(diǎn)達(dá)標(biāo)名校2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁(yè)
安徽省蒙城重點(diǎn)達(dá)標(biāo)名校2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁(yè)
安徽省蒙城重點(diǎn)達(dá)標(biāo)名校2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁(yè)
安徽省蒙城重點(diǎn)達(dá)標(biāo)名校2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁(yè)
安徽省蒙城重點(diǎn)達(dá)標(biāo)名校2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省蒙城重點(diǎn)達(dá)標(biāo)名校2022年十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在圓錐、圓柱、球、正方體這四個(gè)幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體2.在平面直角坐標(biāo)系內(nèi),點(diǎn)P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點(diǎn)G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時(shí),△AEF為等邊三角形;④當(dāng)∠EAF=60°時(shí),S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④4.如圖是由長(zhǎng)方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.5.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點(diǎn),且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.56.《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就.其中記載:今有共買(mǎi)物,人出八,盈三;人出七,不足四,問(wèn)人數(shù)、物價(jià)各幾何?譯文:今有人合伙購(gòu)物,每人出8錢(qián),會(huì)多3錢(qián);每人出7錢(qián),又會(huì)差4錢(qián),問(wèn)人數(shù)、物價(jià)各是多少?設(shè)合伙人數(shù)為x人,物價(jià)為y錢(qián),以下列出的方程組正確的是(

)A. B. C. D.7.不透明袋子中裝有一個(gè)幾何體模型,兩位同學(xué)摸該模型并描述它的特征.甲同學(xué):它有4個(gè)面是三角形;乙同學(xué):它有8條棱.該模型的形狀對(duì)應(yīng)的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐8.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個(gè)數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同9.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為()A. B.8 C. D.10.一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.我國(guó)古代《易經(jīng)》一書(shū)中記載,遠(yuǎn)古時(shí)期,人們通過(guò)在繩子上打結(jié)來(lái)記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿(mǎn)六進(jìn)一,用來(lái)記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_(kāi)____個(gè).12.如圖,有一直徑是的圓形鐵皮,現(xiàn)從中剪出一個(gè)圓周角是90°的最大扇形ABC,用該扇形鐵皮圍成一個(gè)圓錐,所得圓錐的底面圓的半徑為米.13.如圖,已知圓柱底面周長(zhǎng)為6cm,圓柱高為2cm,在圓柱的側(cè)面上,過(guò)點(diǎn)A和點(diǎn)C嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為_(kāi)____cm.14.已知,則______15.邊長(zhǎng)為6的正六邊形外接圓半徑是_____.16.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F(xiàn)分別是線(xiàn)段BC,AC的中點(diǎn),連結(jié)EF.(1)線(xiàn)段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.(3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),延長(zhǎng)FC交AB于點(diǎn)D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點(diǎn),弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.18.(8分)一輛慢車(chē)從甲地勻速行駛至乙地,一輛快車(chē)同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車(chē)之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示:(1)甲乙兩地相距千米,慢車(chē)速度為千米/小時(shí).(2)求快車(chē)速度是多少?(3)求從兩車(chē)相遇到快車(chē)到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式.(4)直接寫(xiě)出兩車(chē)相距300千米時(shí)的x值.19.(8分)如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線(xiàn)上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線(xiàn);

(2)過(guò)點(diǎn)B作⊙O的切線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,BC=6,ADBD=220.(8分)如圖1所示是一輛直臂高空升降車(chē)正在進(jìn)行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為2m.當(dāng)起重臂AC長(zhǎng)度為8m,張角∠HAC為118°時(shí),求操作平臺(tái)C離地面的高度.(果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)21.(8分)在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上一點(diǎn),EM⊥EC交AB于點(diǎn)M,點(diǎn)N在射線(xiàn)MB上,且AE是AM和AN的比例中項(xiàng).如圖1,求證:∠ANE=∠DCE;如圖2,當(dāng)點(diǎn)N在線(xiàn)段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長(zhǎng);連接AC,如果△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).22.(10分)某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測(cè)量某廣告牌的寬度(圖中線(xiàn)段MN的長(zhǎng)),直線(xiàn)MN垂直于地面,垂足為點(diǎn)P.在地面A處測(cè)得點(diǎn)M的仰角為58°、點(diǎn)N的仰角為45°,在B處測(cè)得點(diǎn)M的仰角為31°,AB=5米,且A、B、P三點(diǎn)在一直線(xiàn)上.請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長(zhǎng).(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)23.(12分)一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)和點(diǎn),求一次函數(shù)的解析式.24.三輛汽車(chē)經(jīng)過(guò)某收費(fèi)站下高速時(shí),在2個(gè)收費(fèi)通道A,B中,可隨機(jī)選擇其中的一個(gè)通過(guò).(1)三輛汽車(chē)經(jīng)過(guò)此收費(fèi)站時(shí),都選擇A通道通過(guò)的概率是;(2)求三輛汽車(chē)經(jīng)過(guò)此收費(fèi)站時(shí),至少有兩輛汽車(chē)選擇B通道通過(guò)的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進(jìn)行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長(zhǎng)方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長(zhǎng)方形(中間有一豎),故不符合題意,故選C.【點(diǎn)睛】本題考查了簡(jiǎn)單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關(guān)鍵.2、D【解析】

判斷出P的橫縱坐標(biāo)的符號(hào),即可判斷出點(diǎn)P所在的相應(yīng)象限.【詳解】當(dāng)a為正數(shù)的時(shí)候,a+3一定為正數(shù),所以點(diǎn)P可能在第一象限,一定不在第四象限,

當(dāng)a為負(fù)數(shù)的時(shí)候,a+3可能為正數(shù),也可能為負(fù)數(shù),所以點(diǎn)P可能在第二象限,也可能在第三象限,

故選D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)的知識(shí)點(diǎn),解題的關(guān)鍵是由a的取值判斷出相應(yīng)的象限.3、C【解析】

①通過(guò)條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設(shè)BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當(dāng)∠DAF=15°時(shí),可計(jì)算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當(dāng)∠EAF=60°時(shí),設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過(guò)比較大小就可以得出結(jié)論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設(shè)BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當(dāng)y=(2?)a時(shí)成立,(故②錯(cuò)誤).③當(dāng)∠DAF=15°時(shí),∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當(dāng)∠EAF=60°時(shí),設(shè)EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點(diǎn)睛】本題考查了正方形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等邊三角形的性質(zhì)的運(yùn)用,三角形的面積公式的運(yùn)用,解答本題時(shí)運(yùn)用勾股定理的性質(zhì)解題時(shí)關(guān)鍵.4、A【解析】分析:根據(jù)從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒(méi)有圓心的圓,故選A.點(diǎn)睛:本題考查了簡(jiǎn)單組合體的三視圖,從上邊看得到的圖形是俯視圖.5、A【解析】

連接AO并延長(zhǎng)到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長(zhǎng)到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點(diǎn),AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽R(shí)t△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點(diǎn)睛】本題主要考查了圓周角定理、勾股定理,解題的關(guān)鍵是掌握輔助線(xiàn)的作法.6、C【解析】【分析】分析題意,根據(jù)“每人出8錢(qián),會(huì)多3錢(qián);每人出7錢(qián),又會(huì)差4錢(qián),”可分別列出方程.【詳解】設(shè)合伙人數(shù)為x人,物價(jià)為y錢(qián),根據(jù)題意得故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):列方程組解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.7、D【解析】試題分析:根據(jù)有四個(gè)三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個(gè)三角形的面,四棱柱沒(méi)有三角形的面,三棱錐有四個(gè)三角形的面,但是只有6條棱.故選D考點(diǎn):幾何體的形狀8、B【解析】試題分析:根據(jù)分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點(diǎn):由三視圖判斷幾何體;簡(jiǎn)單組合體的三視圖.9、D【解析】∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.10、C【解析】試題解析:一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】分析:類(lèi)比于現(xiàn)在我們的十進(jìn)制“滿(mǎn)十進(jìn)一”,可以表示滿(mǎn)六進(jìn)一的數(shù)為:萬(wàn)位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個(gè)位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點(diǎn)睛:本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿(mǎn)六進(jìn)一計(jì)數(shù),運(yùn)用了類(lèi)比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識(shí),另一方面也考查了學(xué)生的思維能力.12、【解析】

先利用△ABC為等腰直角三角形得到AB=1,再設(shè)圓錐的底面圓的半徑為r,則根據(jù)圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線(xiàn)長(zhǎng)和弧長(zhǎng)公式得到2πr=,然后解方程即可.【詳解】∵⊙O的直徑BC=,

∴AB=BC=1,

設(shè)圓錐的底面圓的半徑為r,

則2πr=,解得r=,

即圓錐的底面圓的半徑為米故答案為.13、2【解析】

要求絲線(xiàn)的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線(xiàn)段最短”得出結(jié)果,在求線(xiàn)段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開(kāi),得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.∵圓柱底面的周長(zhǎng)為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長(zhǎng)最小為2AC=2cm.故答案為2.【點(diǎn)睛】本題考查了平面展開(kāi)?最短路徑問(wèn)題,圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題就是把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”,用勾股定理解決.14、34【解析】∵,∴=,故答案為34.15、6【解析】

根據(jù)正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,∴邊長(zhǎng)為6的正六邊形外接圓半徑是6,故答案為:6.【點(diǎn)睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形是解題的關(guān)鍵.16、(1)互相垂直;;(2)結(jié)論仍然成立,證明見(jiàn)解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長(zhǎng),進(jìn)而得出答案;

(2)利用已知得出△BEC∽△AFC,進(jìn)而得出∠1=∠2,即可得出答案;

(3)過(guò)點(diǎn)D作DH⊥BC于H,則DB=4-(6-2)=2-2,進(jìn)而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進(jìn)而得出答案.【詳解】解:(1)如圖1,線(xiàn)段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點(diǎn)E,F(xiàn)分別是線(xiàn)段BC,AC的中點(diǎn),

∴=;(2))如圖2,∵點(diǎn)E,F(xiàn)分別是線(xiàn)段BC,AC的中點(diǎn),

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長(zhǎng)BE交AC于點(diǎn)O,交AF于點(diǎn)M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過(guò)點(diǎn)D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結(jié)論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結(jié)果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點(diǎn),∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點(diǎn)睛】本題考查了等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、垂徑定理、三角函數(shù)等知識(shí),熟練掌握相似三角形的判定與性質(zhì)、勾股定理是關(guān)鍵.18、(1)10,1;(2)快車(chē)速度是2千米/小時(shí);(3)從兩車(chē)相遇到快車(chē)到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式為y=150x﹣10;(4)當(dāng)x=2小時(shí)或x=4小時(shí)時(shí),兩車(chē)相距300千米.【解析】

(1)由當(dāng)x=0時(shí)y=10可得出甲乙兩地間距,再利用速度=兩地間距÷慢車(chē)行駛的時(shí)間,即可求出慢車(chē)的速度;(2)設(shè)快車(chē)的速度為a千米/小時(shí),根據(jù)兩地間距=兩車(chē)速度之和×相遇時(shí)間,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;(3)分別求出快車(chē)到達(dá)甲地的時(shí)間及快車(chē)到達(dá)甲地時(shí)兩車(chē)之間的間距,根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出該函數(shù)關(guān)系式;(4)利用待定系數(shù)法求出當(dāng)0≤x≤4時(shí)y與x之間的函數(shù)關(guān)系式,將y=300分別代入0≤x≤4時(shí)及4≤x≤時(shí)的函數(shù)關(guān)系式中求出x值,此題得解.【詳解】解:(1)∵當(dāng)x=0時(shí),y=10,∴甲乙兩地相距10千米.10÷10=1(千米/小時(shí)).故答案為10;1.(2)設(shè)快車(chē)的速度為a千米/小時(shí),根據(jù)題意得:4(1+a)=10,解得:a=2.答:快車(chē)速度是2千米/小時(shí).(3)快車(chē)到達(dá)甲地的時(shí)間為10÷2=(小時(shí)),當(dāng)x=時(shí),兩車(chē)之間的距離為1×=400(千米).設(shè)當(dāng)4≤x≤時(shí),y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),∵該函數(shù)圖象經(jīng)過(guò)點(diǎn)(4,0)和(,400),∴,解得:,∴從兩車(chē)相遇到快車(chē)到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式為y=150x﹣10.(4)設(shè)當(dāng)0≤x≤4時(shí),y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),∵該函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,10)和(4,0),∴,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣150x+10.當(dāng)y=300時(shí),有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴當(dāng)x=2小時(shí)或x=4小時(shí)時(shí),兩車(chē)相距300千米.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一元一次方程的應(yīng)用以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)利用速度=兩地間距÷慢車(chē)行駛的時(shí)間,求出慢車(chē)的速度;(2)根據(jù)兩地間距=兩車(chē)速度之和×相遇時(shí)間,列出關(guān)于a的一元一次方程;(3)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出函數(shù)關(guān)系式;(4)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出當(dāng)y=300時(shí)x的值.19、(1)證明見(jiàn)解析;(2)BE=5【解析】試題分析:連接OD.根據(jù)圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以證明是切線(xiàn).(2)根據(jù)已知條件得到△CDA∽△CBD由相似三角形的性質(zhì)得到CDBD=ADBD.試題解析:(1)連接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半徑,∴CD是⊙O的切線(xiàn);(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,CD∵ADBD=2∵CE,BE是⊙O的切線(xiàn),∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.20、5.8【解析】

過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),易得四邊形為矩形,則,再計(jì)算出,在中,利用正弦可計(jì)算出CF的長(zhǎng)度,然后計(jì)算CF+EF即可.【詳解】解:如圖,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),.又,.∴四邊形為矩形.在中,,..答:操作平臺(tái)離地面的高度約為.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,先將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后利用勾股定理和銳角三角函數(shù)的定義進(jìn)行計(jì)算.21、(1)見(jiàn)解析;(2);(1)DE的長(zhǎng)分別為或1.【解析】

(1)由比例中項(xiàng)知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項(xiàng)∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論