北師大版高一數(shù)學教學計劃梳理_第1頁
北師大版高一數(shù)學教學計劃梳理_第2頁
北師大版高一數(shù)學教學計劃梳理_第3頁
北師大版高一數(shù)學教學計劃梳理_第4頁
北師大版高一數(shù)學教學計劃梳理_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北師大版高一數(shù)學教學計劃梳理教學內(nèi)容:一、教材章節(jié)與內(nèi)容本節(jié)課為人教版高中數(shù)學必修一第三章第一節(jié)“函數(shù)的概念”,主要內(nèi)容包括:函數(shù)的定義、函數(shù)的表示方法、函數(shù)的性質等。二、教學目標:1.理解函數(shù)的概念,掌握函數(shù)的表示方法,能夠正確列出簡單函數(shù)的表達式。2.了解函數(shù)的性質,能夠判斷函數(shù)的單調性、奇偶性等。3.培養(yǎng)學生的邏輯思維能力,提高學生解決實際問題的能力。教學難點與重點:重點:函數(shù)的概念、函數(shù)的表示方法、函數(shù)的性質。難點:函數(shù)的單調性、奇偶性的判斷。教具與學具準備:教具:黑板、粉筆、多媒體設備學具:教材、筆記本、鉛筆、橡皮教學過程:一、情景引入(5分鐘)1.引導學生回顧初中階段學習的函數(shù)知識,提問:什么是函數(shù)?函數(shù)有什么性質?二、新課講解(15分鐘)1.教師講解函數(shù)的定義:函數(shù)是一種數(shù)學關系,它把一個集合(定義域)中的每個元素對應到另一個集合(值域)中的一個元素。2.教師講解函數(shù)的表示方法:函數(shù)可以用解析式、表格、圖象等方式表示。3.教師講解函數(shù)的性質:函數(shù)具有單調性、奇偶性等性質。三、例題講解(10分鐘)1.教師展示例題:判斷下列函數(shù)的單調性、奇偶性。例1.y=2x例2.y=x^22.學生獨立思考,教師引導學生討論解題思路。3.教師講解解題過程,強調判斷函數(shù)性質的方法。四、隨堂練習(5分鐘)1.學生自主完成練習題:練習1.判斷下列函數(shù)的單調性。y=x^3y=x^2練習2.判斷下列函數(shù)的奇偶性。y=x^2y=|x|2.教師選取部分學生的作業(yè)進行點評,講解錯誤原因。五、課堂小結(5分鐘)2.學生分享自己的學習收獲,教師給予鼓勵和指導。板書設計:函數(shù)的概念定義:一種數(shù)學關系,把一個集合(定義域)中的每個元素對應到另一個集合(值域)中的一個元素。表示方法:解析式、表格、圖象性質:單調性、奇偶性作業(yè)設計:1.判斷下列函數(shù)的單調性。y=x^3y=x^22.判斷下列函數(shù)的奇偶性。y=x^2y=|x|答案:1.y=x^3單調遞增y=x^2單調遞減2.y=x^2非奇非偶y=|x|偶函數(shù)課后反思及拓展延伸:本節(jié)課通過情景引入、新課講解、例題講解、隨堂練習等環(huán)節(jié),使學生掌握了函數(shù)的基本概念、表示方法和性質。在教學過程中,注重引導學生主動思考、討論合作,提高了學生的邏輯思維能力和解決實際問題的能力。拓展延伸:重點和難點解析:一、函數(shù)的定義和性質1.函數(shù)的定義:函數(shù)是一種數(shù)學關系,它把一個集合(定義域)中的每個元素對應到另一個集合(值域)中的一個元素。在數(shù)學中,我們通常用f(x)表示函數(shù),其中x是自變量,f(x)是因變量。2.函數(shù)的性質:函數(shù)具有單調性、奇偶性等性質。(1)單調性:如果對于定義域內(nèi)的任意兩個實數(shù)x1和x2,當x1<x2時,都有f(x1)≤f(x2)(或f(x1)≥f(x2)),則函數(shù)f(x)在其定義域內(nèi)是單調遞增(或單調遞減)的。(2)奇偶性:如果對于定義域內(nèi)的任意實數(shù)x,都有f(x)=f(x),則函數(shù)f(x)是偶函數(shù);如果對于定義域內(nèi)的任意實數(shù)x,都有f(x)=f(x),則函數(shù)f(x)是奇函數(shù)。二、函數(shù)的表示方法1.解析式:函數(shù)的解析式是函數(shù)的一種表達方式,通常用數(shù)學公式表示。例如,函數(shù)f(x)=2x就是一個解析式。2.表格:函數(shù)的表格是函數(shù)的一種可視化表示方式,它將自變量和因變量的值以表格的形式列出。例如,函數(shù)f(x)=x^2的表格如下:x|f(x)|0|01|11|13.圖象:函數(shù)的圖象是函數(shù)的一種圖形表示方式,它將函數(shù)的解析式或表格中的數(shù)據(jù)以圖形的形式繪制在坐標系中。例如,函數(shù)f(x)=x^2的圖象是一個開口向上的拋物線。三、函數(shù)的單調性和奇偶性的判斷1.單調性的判斷:(1)對于單調遞增的函數(shù),如果x1<x2,則f(x1)≤f(x2)。(2)對于單調遞減的函數(shù),如果x1<x2,則f(x1)≥f(x2)。2.奇偶性的判斷:(1)如果對于定義域內(nèi)的任意實數(shù)x,都有f(x)=f(x),則函數(shù)f(x)是偶函數(shù)。(2)如果對于定義域內(nèi)的任意實數(shù)x,都有f(x)=f(x),則函數(shù)f(x)是奇函數(shù)。四、教學過程中的關鍵點1.函數(shù)的定義:要讓學生理解函數(shù)是一種數(shù)學關系,它把一個集合(定義域)中的每個元素對應到另一個集合(值域)中的一個元素。2.函數(shù)的表示方法:要讓學生掌握函數(shù)的解析式、表格、圖象等表示方法,并能夠根據(jù)實際情況選擇合適的表示方式。3.函數(shù)的單調性和奇偶性:要讓學生學會判斷函數(shù)的單調性和奇偶性,并能運用這些性質解決實際問題。4.例題講解:要讓學生通過例題理解函數(shù)的性質,并能夠運用性質解決問題。5.隨堂練習:要讓學生通過練習鞏固所學知識,提高解題能力。五、板書設計函數(shù)的概念定義:一種數(shù)學關系,把一個集合(定義域)中的每個元素對應到另一個集合(值域)中的一個元素。表示方法:解析式、表格、圖象性質:單調性、奇偶性六、作業(yè)設計1.判斷下列函數(shù)的單調性。y=x^3y=x^22.判斷下列函數(shù)的奇偶性。y=x^2y=|x|答案:1.y=x^3單調遞增y=x^2單調遞減2.y=x^2非奇非偶y=|x|偶函數(shù)本節(jié)課程教學技巧和竅門:一、語言語調1.在講解函數(shù)的定義和性質時,使用簡潔明了的語言,避免使用復雜的詞匯和表達方式。2.在講解函數(shù)的表示方法時,使用生動的例子和圖象來說明,幫助學生更好地理解。3.在講解函數(shù)的單調性和奇偶性時,使用具體的例題來說明,讓學生通過實際問題來理解這些性質。二、時間分配1.合理安排課堂時間,確保每個環(huán)節(jié)都有足夠的時間進行講解和練習。2.在講解函數(shù)的定義和性質時,可以花較多的時間,確保學生能夠理解和掌握。3.在講解函數(shù)的單調性和奇偶性時,可以適當縮短時間,讓學生通過練習來鞏固所學知識。三、課堂提問1.在講解函數(shù)的定義和性質時,可以適時提問學生,讓學生積極參與課堂討論,加深對函數(shù)概念的理解。2.在講解函數(shù)的表示方法時,可以讓學生舉例說明,培養(yǎng)學生的思維能力和創(chuàng)造力。3.在講解函數(shù)的單調性和奇偶性時,可以讓學生解釋判斷的依據(jù),提高學生的邏輯思維能力。四、情景導入1.可以通過實際生活中的例子來導入函數(shù)的概念,如“溫度隨時間的變化”、“價格隨數(shù)量的變化”等,讓學生感受到函數(shù)的實際意義。2.可以通過提問學生對初中階段函數(shù)知識的回憶,導入高中階段函數(shù)的學習,讓學生建立起知識之間的聯(lián)系。教案反思:1.在教學過程中,是否能夠清晰地講解函數(shù)的定義和性質,讓學生理解并掌握。2.在教學過程中,是否能夠有效地引導學生通過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論