江蘇省東臺市第五聯盟2022年中考二模數學試題含解析_第1頁
江蘇省東臺市第五聯盟2022年中考二模數學試題含解析_第2頁
江蘇省東臺市第五聯盟2022年中考二模數學試題含解析_第3頁
江蘇省東臺市第五聯盟2022年中考二模數學試題含解析_第4頁
江蘇省東臺市第五聯盟2022年中考二模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省東臺市第五聯盟2022年中考二模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A.2+a=3 B.=C. D.=2.在代數式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠03.如果將拋物線向下平移1個單位,那么所得新拋物線的表達式是A. B. C. D.4.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定5.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里6.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.7.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+98.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1259.據統計,2018年全國春節(jié)運輸人數約為3000000000人,將3000000000用科學記數法表示為()A.0.3×1010B.3×109C.30×108D.300×10710.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③二、填空題(本大題共6個小題,每小題3分,共18分)11.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.12.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.13.甲、乙兩個機器人檢測零件,甲比乙每小時多檢測20個,甲檢測300個比乙檢測200個所用的時間少,若設甲每小時檢測個,則根據題意,可列出方程:__________.14.經過三邊都不相等的三角形的一個頂點的線段把三角形分成兩個小三角形,如果其中一個是等腰三角形,另外一個三角形和原三角形相似,那么把這條線段定義為原三角形的“和諧分割線”.如圖,線段CD是△ABC的“和諧分割線”,△ACD為等腰三角形,△CBD和△ABC相似,∠A=46°,則∠ACB的度數為_____.15.拋物線y=2x2+3x+k﹣2經過點(﹣1,0),那么k=_____.16.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.三、解答題(共8題,共72分)17.(8分)已知,數軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數為,點B表示的數為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數,并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.18.(8分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統計圖:運動項目

頻數(人數)

羽毛球

30

籃球

乒乓球

36

排球

足球

12

請根據以上圖表信息解答下列問題:頻數分布表中的,;在扇形統計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?19.(8分)如圖,已知ABCD是邊長為3的正方形,點P在線段BC上,點G在線段AD上,PD=PG,DF⊥PG于點H,交AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.20.(8分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內完成;若由乙隊單獨施工,則完成工程所需天數是規(guī)定天數的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?21.(8分)某工程隊承擔了修建長30米地下通道的任務,由于工作需要,實際施工時每周比原計劃多修1米,結果比原計劃提前1周完成.求該工程隊原計劃每周修建多少米?22.(10分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.求證:AE與⊙O相切于點A;若AE∥BC,BC=2,AC=2,求AD的長.23.(12分)制作一種產品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據了解,當該材料加熱時,溫度y與時間x成一次函數關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?24.如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據整式的混合運算計算得到結果,即可作出判斷.【詳解】A、2與a不是同類項,不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.2、D【解析】

根據二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.3、C【解析】

根據向下平移,縱坐標相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.4、A【解析】

直接利用圓周角定理結合三角形的外角的性質即可得.【詳解】連接BE,如圖所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.5、D【解析】

根據題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.6、B【解析】試題分析:結合三個視圖發(fā)現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.7、B【解析】

收入和支出是兩個相反的概念,故兩個數字分別為正數和負數.【詳解】收入13元記為+13元,那么支出9元記作-9元【點睛】本題主要考查了正負數的運用,熟練掌握正負數的概念是本題的關鍵.8、B【解析】

根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.9、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.【詳解】解:根據科學計數法的定義可得,3000000000=3×109,故選擇B.【點睛】本題考查了科學計數法的定義,確定n的值是易錯點.10、D【解析】

∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】【分析】設四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據此建立關于x的方程,解之可得.【詳解】設四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質.12、【解析】

根據△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據直角三角形的性質即可求出△AEF的內切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設M是△AEF的內心,過點M作MH⊥AE于H,

則根據圖1的結論得:AH=(AE+AF-EF)=(a-b);

∵MA平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內切圓、等邊三角形的性質、全等三角形的性質和判定,切線的性質,圓的切線長定理,根據已知得出AH的長是解題關鍵.13、【解析】【分析】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據甲檢測300個比乙檢測200個所用的時間少,列出方程即可.【解答】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據題意有:.故答案為【點評】考查分式方程的應用,解題的關鍵是找出題目中的等量關系.14、113°或92°【解析】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.①當AC=AD時,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;②當DA=DC時,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.故答案為113°或92°.15、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.16、.【解析】

由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.三、解答題(共8題,共72分)17、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】

(1)根據數軸即可得到a,b數值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【點睛】本題主要考查了數軸,關鍵在于數形結合思想.18、(1)24,1;(2)54;(3)360.【解析】

(1)根據選擇乒乓球運動的人數是36人,對應的百分比是30%,即可求得總人數,然后利用百分比的定義求得a,用總人數減去其它組的人數求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全??側藬担缓罄每側藬党艘詫陌俜直惹蠼猓驹斀狻浚?)抽取的人數是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全??側藬凳?20÷10%=1200(人),則選擇參加乒乓球運動的人數是1200×30%=360(人).19、(1)證明見解析;(2)1.【解析】

作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個直角即可證明△ADF≌△MPG,從而得出對應邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據旋轉,得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據勾股定理和等量代換求出邊長DF的值;根據相似三角形得出對應邊成比例求出GH的值,從而求出高PH的值;最后根據面積公式得出【詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如圖,∵PD=PG,∴MG=MD,∵四邊形ABCD為矩形,∴PCDM為矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵線段PG繞點P逆時針旋轉90°得到線段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四邊形PEFD為平行四邊形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四邊形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四邊形PEFD的面積=DF?PH=×=1.【點睛】本題考查了平行四邊形的面積、勾股定理、相似三角形判定、全等三角形性質,本題的關鍵是求邊長和高的值20、這項工程的規(guī)定時間是83天【解析】

依據題意列分式方程即可.【詳解】設這項工程的規(guī)定時間為x天,根據題意得451解得x=83.檢驗:當x=83時,3x≠0.所以x=83是原分式方程的解.答:這項工程的規(guī)定時間是83天.【點睛】正確理解題意是解題的關鍵,注意檢驗.21、該工程隊原計劃每周修建5米.【解析】

找出等量關系是工作時間=工作總量÷工作效率,可根據實際施工用的時間+1周=原計劃用的時間,來列方程求解.【詳解】設該工程隊原計劃每周修建x米.由題意得:+1.整理得:x2+x﹣32=2.解得:x1=5,x2=﹣6(不合題意舍去).經檢驗:x=5是原方程的解.答:該工程隊原計劃每周修建5米.【點睛】本題考查了分式方程的應用,找到合適的等量關系是解決問題的關鍵.本題用到的等量關系為:工作時間=工作總量÷工作效率,可根據題意列出方程,判斷所求的解是否符合題意,舍去不合題意的解.22、(1)證明見解析;(2)AD=2.【解析】

(1)如圖,連接OA,根據同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結論;(2)先證明OA⊥BC,由垂徑定理得:,FB=BC,根據勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑定理的應用,屬于基礎題,熟練掌握切線的判定方法是關鍵:有切線時,常?!坝龅角悬c連圓心得半徑,證垂直”.23、(1);(2)20分鐘.【解析】

(1)材料加熱時,設y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數關系式為y=9x+15(0≤x≤5).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論