2025年河南省周口市扶溝縣重點名校初三4月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第1頁
2025年河南省周口市扶溝縣重點名校初三4月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第2頁
2025年河南省周口市扶溝縣重點名校初三4月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第3頁
2025年河南省周口市扶溝縣重點名校初三4月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第4頁
2025年河南省周口市扶溝縣重點名校初三4月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年河南省周口市扶溝縣重點名校初三4月教學質(zhì)量檢測試題數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則的值是()A.1 B. C. D.2.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.483.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元4.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x55.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.36.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.7.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m8.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內(nèi)把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)9.化簡的結(jié)果為()A.﹣1 B.1 C. D.10.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.有四張質(zhì)地、大小、反面完全相同的不透明卡片,正面分別寫著數(shù)字1,2,3,4,現(xiàn)把它們的正面向下,隨機擺放在桌面上,從中任意抽出一張,則抽出的數(shù)字是奇數(shù)的概率是.12.如果a,b分別是2016的兩個平方根,那么a+b﹣ab=___.13.分解因式:.14.如圖,點A,B是反比例函數(shù)y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA,BC,已知點C(2,0),BD=2,S△BCD=3,則S△AOC=__.15.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.16.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉(zhuǎn)90°得矩形AEFG,連接CG、EG,則∠CGE=________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標;(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當y1<y2時x的取值范圍.18.(8分)如圖①,一次函數(shù)y=x﹣2的圖象交x軸于點A,交y軸于點B,二次函數(shù)y=x2+bx+c的圖象經(jīng)過A、B兩點,與x軸交于另一點C.(1)求二次函數(shù)的關(guān)系式及點C的坐標;(2)如圖②,若點P是直線AB上方的拋物線上一點,過點P作PD∥x軸交AB于點D,PE∥y軸交AB于點E,求PD+PE的最大值;(3)如圖③,若點M在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點M的坐標.19.(8分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.20.(8分)已知關(guān)于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.21.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個公共點,則R的取值范圍是多少?22.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽.從中抽取了部分學生成績(得分數(shù)取正整數(shù),滿分為100分)進行統(tǒng)計,繪制統(tǒng)計頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補全頻數(shù)分布直方圖;(4)若成績在80分以上優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀學生有名.23.(12分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.24.化簡分式,并從0、1、2、3這四個數(shù)中取一個合適的數(shù)作為x的值代入求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】由題意知:AB=BE=6,BD=AD﹣AB=2(圖2中),AD=AB﹣BD=4(圖3中);∵CE∥AB,∴△ECF∽△ADF,得,即DF=2CF,所以CF:CD=1:3,故選C.【點睛】本題考查了矩形的性質(zhì),折疊問題,相似三角形的判定與性質(zhì)等,準確識圖是解題的關(guān)鍵.2、D【解析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設(shè)BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設(shè)AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的性質(zhì)定理、勾股定理、二元二次方程組等知識,解題的關(guān)鍵是學會添加常用輔助線,學會利用參數(shù),構(gòu)建方程解決問題,屬于中考壓軸題.3、B【解析】試題分析:通過理解題意可知本題的等量關(guān)系,即每件作服裝仍可獲利=按成本價提高40%后標價,又以8折賣出,根據(jù)這兩個等量關(guān)系,可列出方程,再求解.解:設(shè)這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個方程得:x=125則這種服裝每件的成本是125元.故選B.考點:一元一次方程的應(yīng)用.4、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.5、D【解析】

根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.6、C【解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.本題考查切線長定理,掌握切線長定理是解題的關(guān)鍵.7、B【解析】

由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對應(yīng)邊成比例求出GH的長即BD的長即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實際問題中抽象出相似三角形.8、A【解析】

根據(jù)位似變換的性質(zhì)可知,△ODC∽△OBA,相似比是,根據(jù)已知數(shù)據(jù)可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.本題考查的是位似變換,掌握位似變換與相似的關(guān)系是解題的關(guān)鍵,注意位似比與相似比的關(guān)系的應(yīng)用.9、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.10、B【解析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.考查了二次函數(shù)的最值,解題時,利用配方法和非負數(shù)的性質(zhì)求得xy的最大值.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:這四個數(shù)中,奇數(shù)為1和3,則P(抽出的數(shù)字是奇數(shù))=2÷4=.考點:概率的計算.12、1【解析】

先由平方根的應(yīng)用得出a,b的值,進而得出a+b=0,代入即可得出結(jié)論.【詳解】∵a,b分別是1的兩個平方根,∴∵a,b分別是1的兩個平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案為:1.此題主要考查了平方根的性質(zhì)和意義,解本題的關(guān)鍵是熟練掌握平方根的性質(zhì).13、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.14、1.【解析】

由三角形BCD為直角三角形,根據(jù)已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標,代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關(guān)鍵.15、30【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據(jù)折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質(zhì)16、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為三、解答題(共8題,共72分)17、(1)C(﹣3,2);(2)y1=,y2=﹣x+3;(3)3<x<1.【解析】分析:(1)過點C作CN⊥x軸于點N,由已知條件證Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3結(jié)合點C在第二象限即可得到點C的坐標;(2)設(shè)△ABC向右平移了c個單位,則結(jié)合(1)可得點C′,B′的坐標分別為(﹣3+c,2)、(c,1),再設(shè)反比例函數(shù)的解析式為y1=,將點C′,B′的坐標代入所設(shè)解析式即可求得c的值,由此即可得到點C′,B′的坐標,這樣用待定系數(shù)法即可求得兩個函數(shù)的解析式了;(3)結(jié)合(2)中所得點C′,B′的坐標和圖象即可得到本題所求答案.詳解:(1)作CN⊥x軸于點N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵點C在第二象限,∴C(﹣3,2);(2)設(shè)△ABC沿x軸的正方向平移c個單位,則C′(﹣3+c,2),則B′(c,1),設(shè)這個反比例函數(shù)的解析式為:y1=,又點C′和B′在該比例函數(shù)圖象上,把點C′和B′的坐標分別代入y1=,得﹣1+2c=c,解得c=1,即反比例函數(shù)解析式為y1=,此時C′(3,2),B′(1,1),設(shè)直線B′C′的解析式y(tǒng)2=mx+n,∵,∴,∴直線C′B′的解析式為y2=﹣x+3;(3)由圖象可知反比例函數(shù)y1和此時的直線B′C′的交點為C′(3,2),B′(1,1),∴若y1<y2時,則3<x<1.點睛:本題是一道綜合考查“全等三角形”、“一次函數(shù)”、“反比例函數(shù)”和“平移的性質(zhì)”的綜合題,解題的關(guān)鍵是:(1)通過作如圖所示的輔助線,構(gòu)造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性質(zhì)結(jié)合點B、C的坐標表達出點C′和B′的坐標,由點C′和B′都在反比例函數(shù)的圖象上列出方程,解方程可得點C′和B′的坐標,從而使問題得到解決.18、(1)二次函數(shù)的關(guān)系式為y=;C(1,0);(2)當m=2時,PD+PE有最大值3;(3)點M的坐標為(,)或(,).【解析】

(1)先求出A、B的坐標,然后把A、B的坐標分別代入二次函數(shù)的解析式,解方程組即可得到結(jié)論;(2)先證明△PDE∽△OAB,得到PD=2PE.設(shè)P(m,),則E(m,),PD+PE=3PE,然后配方即可得到結(jié)論.(3)分兩種情況討論:①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.求出圓心O1的坐標和半徑,利用MO1=半徑即可得到結(jié)論.②當點M在在直線AB下方時,作O1關(guān)于AB的對稱點O2,如圖2.求出點O2的坐標,算出DM的長,即可得到結(jié)論.【詳解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函數(shù)y=的圖像經(jīng)過A、B兩點,∴,解得:,∴二次函數(shù)的關(guān)系式為y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設(shè)P(m,),則E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴當m=2時,PD+PE有最大值3.(3)①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.∵△ABC的外接圓O1的圓心在對稱軸上,設(shè)圓心O1的坐標為(,-t).∴=,解得:t=2,∴圓心O1的坐標為(,-2),∴半徑為.設(shè)M(,y).∵MO1=,∴,解得:y=,∴點M的坐標為().②當點M在在直線AB下方時,作O1關(guān)于AB的對稱點O2,如圖2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點O2的坐標為(,0),∴O2D=1,∴DM==,∴點M的坐標為(,).綜上所述:點M的坐標為(,)或(,).點睛:本題是二次函數(shù)的綜合題.考查了求二次函數(shù)的解析式,求二次函數(shù)的最值,圓的有關(guān)性質(zhì).難度比較大,解答第(3)問的關(guān)鍵是求出△ABC外接圓的圓心坐標.19、(1)DD′=1,A′F=4﹣;(2);(1).【解析】

(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.20、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解析】

(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出的取值;

(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=3,,根據(jù)方程的兩個根都是整數(shù)可得m=1或.結(jié)合(1)的結(jié)論可知m1.解方程即可.【詳解】解:(1)∵關(guān)于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方程的整數(shù)根為0和3.考查了解分式方程,一元二次方程根與系數(shù)的關(guān)系,解一元二次方程等,熟練掌握方程的解法是解題的關(guān)鍵.21、R=125或R=【解析】

解:當圓與斜邊相切時,則R=125,即圓與斜邊有且只有一個公共點,當R=12考點:圓與直線的位置關(guān)系.22、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數(shù)比B組小24,而A組的頻率比B組小12%,則可計算出調(diào)查的總?cè)藬?shù),然后計算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據(jù)百分比之和為1可得E組百分比;(3)計算出C和E組的頻數(shù)后補全頻數(shù)分布直方圖;(4)利用樣本估計總體,用2000乘以D組和E組的頻率和即可.本題解析:()調(diào)查的總?cè)藬?shù)為,∴,,()部分所對的圓心角,即,組所占比例為:,()組的頻數(shù)為,組的頻數(shù)為,補全頻數(shù)分布直方圖為:(),∴估計成績優(yōu)秀的學生有人.點睛:本題考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,要認真觀察、分析、研究統(tǒng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論