中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí):平行線(四種模型)(解析版)_第1頁
中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí):平行線(四種模型)(解析版)_第2頁
中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí):平行線(四種模型)(解析版)_第3頁
中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí):平行線(四種模型)(解析版)_第4頁
中考數(shù)學(xué)重難點(diǎn)復(fù)習(xí):平行線(四種模型)(解析版)_第5頁
已閱讀5頁,還剩76頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

重難點(diǎn)01平行線(四種模型)

目錄

題型一:M型(含鋸齒形)

題型二:筆尖型

題型三:〃雞翅”型

題型四:“骨折”型

[二朝方法

模型一:M模型

如圖,若AB//CD,你能確定NB、ND與NBED的大小關(guān)系嗎?

理由如下:

過點(diǎn)E作EF//AB

又AB//CD.

EF//CD.

ZD=ZDEF.ZB=ZBEF.

ZB+ZD=ZBEF+ZDEF=ZDEB

模型二、筆尖型

如圖,AB//CD,探索NB、ND與NDEB的大小關(guān)系?

CD

解:ZB+ZD+ZDEB=360°.

理由如下:

1/81

第1頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

過點(diǎn)E作EF//AB.

又VAB//CD.

.?.EF//CD,

ZB+ZBEF=180°.

ZD+ZDEF=180".

ZB+ZD+ZDEB

=ZB+ZD+ZBEF+ZDEF=360°.

PPZB+ZD+ZDEB=360°.

模型三、“雞翅”型

如圖,已知AB〃CD,試猜想NA、NE、ZC的關(guān)系,并說明理由.

解:ZAEC=ZA-ZC,

理由如下:

過點(diǎn)E作EF//AB

又VAB//CD.

.,.EF//CD.

ZA+ZFEA=180°,

ZC+ZFEC=180°

NAEC=ZFEC-ZFEA

=180°-ZC-(180°-ZA)

=NA-/C

即:ZAEC=ZA-ZC

模型四、“骨折模型”

如圖,已知BC〃DE,試猜想NA、NB、ZD的關(guān)系,并說明理由.

2/81

第2頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

理由如下:

過點(diǎn)A作AG//BC

又VCB//DE.

.,.AG//DE

AZGAB+ZB=180°,

ZGAD+ZD=180°

ZBAD=ZGAB-ZGAD

=180°-ZB-(180°-ZD)

=ZD-ZB

即:ZBAD=ZD-ZB

注:平行線四大模型大題不可直接使用,必須證明后再用,選擇填空滿足條件即可直接用!

Q能力拓展

題型一:M型(含鋸齒形)

一、填空題

1.(2023春?七年級(jí)課時(shí)練習(xí))如圖,已知N8〃°,BE平分/ABCtDE平分NADC,NBAD=80。,

/BCD=n°,則/BED的度數(shù)為.(用含〃的式子表示)

40°+-?°

【答案】2

【分析】首先過點(diǎn)£作瓦?〃//由平行線的傳遞性得/8〃如斯,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,得

3/81

第3頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

ZABE=—n°

出/砥?=方,NA4O=440c=80。,由角平分線的定義得出2,/EDC=40。,再由兩直

ZBEF=ZABE=-n°-八…

線平行,內(nèi)錯(cuò)角相等得出2/EED=/E0C=4O。,由=尸+/五四即可得出答

案.

【詳解】解:如圖,過點(diǎn)£作打〃N3,則43〃如EF,

■:AB//CD

,?,/BCD=AABC=rp,ZBAD=ZADC=80°,

又BE平分NABC,DE平分/ADC,

ZABE=-ZABC=-n°

22.

ZEDC=-ZADC=」x80。=40°

22

?-ABIIOFCD

ZBEF=ZABE=-n°

2,

/FED=NEDC=40°

/BED=/FED+NBEF=40°+-n°

2,

40°+-M°

故答案為:2.

【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解題關(guān)鍵是作出正確的輔助線,掌握平行線的性質(zhì)和角

平分線的定義.

二、解答題

2.(2023春?七年級(jí)課時(shí)練習(xí))如圖,ABHCD,點(diǎn)£在直線加切內(nèi)部,且/E1CE.

⑴如圖1,連接4。若/£平分/A4。,求證:CE平分//CO;

⑵如圖2,點(diǎn)〃在線段四上,

①若NMCE=NECD,當(dāng)直角頂點(diǎn)£移動(dòng)時(shí),/胡£與乙欣⑦是否存在確定的數(shù)量關(guān)系?并說明理由;

ZMCE=-ZECD八,…

②若"(〃為正整數(shù)),當(dāng)直角頂點(diǎn)£移動(dòng)時(shí),/民4£與/MCZ)是否存在確定的數(shù)量關(guān)系?并說

4/81

第4頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

明理由.

1

【答案】⑴見解析;(2)①/胡研5/加氏90°,理由見解析;②/胡研”+1/加%90°,理由見解析.

【分析】(1)根據(jù)平行的性質(zhì)可得/掰。NM=180°,再根據(jù)NE'CE可得/用。/£0=90°,根據(jù)4?平

分/為C可得/掰后/磯C等量代換可得/閱出N初俏90°,繼而求得/次妾/£窗;

(2)①過£作EF//AB,先利用平行線的傳遞性得出EF//AB//CD,再利用平行線的性質(zhì)及已知條件可推得答案;

②過£作EF//AB,先利用平行線的傳遞性得出外〃勿再利用平行線的性質(zhì)及已知條件可推得答案.

【詳解】(1)解:因?yàn)?3〃c。,

所以/陶價(jià)NM=180°,

因?yàn)?£_LCE,

所以/以什/£竊=90°,

因?yàn)樗钠椒?&C

所以N必田/初C

所以/掰昌/比層90°,

所以N周什/比層90°,

所以NDC/NECA,

所以CE平■分/ACD;

(2)①/掰£與/加力存在確定的數(shù)量關(guān)系:/BAE+5/MC廬9。;

理由如下:過£作)〃4?,

5/81

第5頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

?:AB"CD,

:.EF//AB//CD,

:./BA斤/AEF,/FEO/DCE,

VZ^90°,

:./BAE+/EC廬90°,

■:/MC&/ECD,

J_

:./BAE+5/MCD^G。;

n

②N^£與/觥力存在確定的數(shù)量關(guān)系:N為歷〃+1N肱》90°,

理由如下:過E悴EF〃AB,

-:AB//CD,

:.EF//AB//CD,

:?/BA斤/AEF,4FEO/DCE,

VZ^=90°,

:./BAE+/EC廬,

]_

?:/MC皆n/ECD,

n

:.NBAE”+lNMCD=9Q°.

【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的定義,解決本題的關(guān)鍵是要添加輔助線利用平行性質(zhì).

3.(2023春?七年級(jí)課時(shí)練習(xí))如圖:

⑴如圖1,AB//CDt//BE=45。,NCDE=21。,直接寫出/B即的度數(shù).

⑵如圖2,〃CD,點(diǎn)E為直線AB,。間的一點(diǎn),B尸平分ZABE,DF平分NCDE,寫出ABED與ZF之

間的關(guān)系并說明理由.

⑶如圖3,與CD相交于點(diǎn)G,點(diǎn)£為NBGD內(nèi)一點(diǎn),跖平分/4BE,DF平分ACDE,若ZBGD=60。,

NBFD=95°,直接寫出/BED的度數(shù).

6/81

第6頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

【答案】(1)/應(yīng)氏66°;

(2)/9站2見解析;

⑶/質(zhì)的度數(shù)為130°.

【分析】⑴首先作哥1〃曲根據(jù)直線勿可得所以//吠/1=45°,/吵/2=21°,據(jù)此推

得/應(yīng)氏/1+/2=66°;

(2)首先作EG//AB,延長龍交筋于點(diǎn)H,利用三角形的外角性質(zhì)以及角平分線的定義即可得到/應(yīng)氏2/戶;

⑶延長如交4?于點(diǎn)〃延長制到7,利用三角形的外角性質(zhì)以及角平分線的定義即可得到/戚的度數(shù)為

130°.

【詳解】⑴解:⑴如圖,作瓦/加

?.?直線1〃勿

:.EF//CD,

法Nl=45°,/CZ^N2=21°,

鹿場(chǎng)/l+/2=66°;

(2)解:ABED=2ZF,

理由是:過點(diǎn)、E作EG〃AB,延長DE交BF千點(diǎn)、H,

':AB//CD,:.AB//CD//EG,

.\Z5=Z1+Z2,Z6=Z3+Z4,

又:哥'平分//典DF平■分■Z.CDE,

/.Z2=Z1,Z3=Z4,則/5=2N2,Z6=2Z3,

Z,S£?=2(Z2+Z3),

7/81

第7頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

又//4/3=/幽ZBHIhA^ZBED,

:.N3+/2+N百/BED,

綜上/龐氏/尸42/龐〃即/龐廬2/6;

⑶解:延長加交相于點(diǎn)〃延長〃到,

■:/BGD=6Q°,

/.Z3=Zl+Z^fi9=Zl+60°,Z5fi9=Z2+Z3=Z2+Zl+60°=95°,

;.N2+/1=35°,即2(N2+N1)=70°,

■:BF平分/ABE,DF平■分4CDE,

:.NAB4242,4CD424\,

:.ABEI=ZABE+/BGF2/2+/BGE,/DE1=2CDE+/DG方2/\+2DGE,

龐廬/龐斤/頗=2(N2+Nl)+(竭/〃㈤=70°+60°=130°,

龐。的度數(shù)為130。.

【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),三角形的外角性質(zhì)等知識(shí),掌握平行線的判定和性質(zhì),正確添加

輔助線是解題關(guān)鍵.

4.(2023春?七年級(jí)課時(shí)練習(xí))問題情境:如圖①,直線/3〃"),點(diǎn)£尸分別在直線//切上.

⑴猜想:若4=130°,22=150。,試猜想々=。;

(2)探究:在圖①中探究N1,/2,一尸之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)拓展:將圖①變?yōu)閳D②,若/l+/2=325。,/E尸G=75。,求“G尸的度數(shù).

【答案】⑴8?!?/p>

⑵/尸=360。-/I-/2;證明見詳解

⑶140。

【分析】(1)過點(diǎn)尸作出〃/3,利用平行的性質(zhì)就可以求角度,解決此問;

(2)利用平行線的性質(zhì)求位置角的數(shù)量關(guān)系,就可以解決此問;

(3)分別過點(diǎn)尸、點(diǎn)G作“N〃/3、KR〃/8,然后利用平行線的性質(zhì)求位置角的數(shù)量關(guān)系即可.

【詳解】(D解:如圖過點(diǎn)尸作出〃48,

8/81

第8頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

?*?AB//CD>

:.AB〃MNCD.

,?,/l+/E/W=180。,

+NFPN=.

???Zl=130,°Z2=150,°

.??Z1+Z2+4EPN+ZFPN=360°

.??ZEPN+FPN=360°-130o-150o=80°.

???ZP=ZEPN+ZFPN,

AZ7^80°.

故答案為:80。;

⑵解:/尸=360。-理由如下:

如圖過點(diǎn)P作“N〃/8,

??AB〃CD

:.AB〃MNCD.

,?,/l+/EPN=180。,

N2+N/7W=180。.

.??Z1+Z2+ZEPN+ZFPN=360°

??ZEPN+AFPN=AP

/尸=360。-/I-N2.

⑶如圖分別過點(diǎn)尸、點(diǎn)G作MN〃/8、KR//AB

??AB//CD

:.AB//M泗KRCD.

,?,Zl+ZEPN=180°,

/NPG+/PGR=l800

/EGb+22=180。.

.?.Z1+ZEPN+ZNPG+/PGR+RGF+Z2=540°

?.?ZEPG=ZEPN+ZNPG=75°

/PGR+/RGF=NPGF

Zl+Z2=325°>

ZPGF+Z1+Z2+ZEPG=540°

9/81

第9頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

ZPGF=540°-325°-75°=140°

故答案為:140。.

【點(diǎn)睛】本題考查了平行線的性質(zhì)定理,準(zhǔn)確的作出輔助線和正確的計(jì)算是解決本題的關(guān)鍵.

5.(2023春?七年級(jí)課時(shí)練習(xí))已知直線?!?duì)直線外分別與直線a,力相交于點(diǎn)££點(diǎn)46分別在直線a,b

上,且在直線砂的左側(cè),點(diǎn)戶是直線露上一動(dòng)點(diǎn)(不與點(diǎn)E,尸重合),設(shè)

/B4£=/l,NAPB=N2,Z.PBF=43.

⑴如圖1,當(dāng)點(diǎn)尸在線段E尸上運(yùn)動(dòng)時(shí),試說明/1+N3=N2;

(2)當(dāng)點(diǎn)尸在線段灰外運(yùn)動(dòng)時(shí)有兩種情況.

①如圖2寫出Nl,Z2,N3之間的關(guān)系并給出證明;

②如圖3所示,猜想/I,Z2,Z3之間的關(guān)系(不要求證明).

【答案】(1)證明見詳解

⑵①E3=D1+D2;證明見詳解;②Z1=/2+/3;證明見詳解

【分析】(1)如圖4過點(diǎn)尸作PC〃氣利用平行線的傳遞性可知尸C〃/牝根據(jù)平行線的性質(zhì)可知

/I=/4PC,Z3=/BPC,根據(jù)等量代換就可以得出/2=/I+/3;

⑵①如圖5過點(diǎn)尸作尸?!ā?,利用平行線的傳遞性可知PC"H6,根據(jù)平行線的性質(zhì)可知=ZBPC,

/I=//PC,根據(jù)等量代換就可以得出£)3=D1+D2;

②如圖6過點(diǎn)尸作尸C〃氣利用平行線的傳遞性可知PC//6/b,根據(jù)平行線的性質(zhì)可知N1=ZAPCt

/3=NBPC,根據(jù)等量代換就可以得出/1=/2+/3.

【詳解】(1)1?:如圖4所示:過點(diǎn)尸作尸C〃a,

a//b

:9PC//b

;/=/APC,/3=/BPC,

?:/2=/4PC+/BPC,

.../2=/l+/3;

(2)解:①如圖5過點(diǎn)尸作尸C〃a,

a//b

.?.PC〃/b

:?氏NBPC,Nl=NAPC,

?:/BPC=N2+/APC,

...B3=B1+E)2;

10/81

第10頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

②如圖6過點(diǎn)尸作尸C〃a,

a//b

.?.PC〃/b

???Z1=ZAPC,Z3=ZBPC,

???,/APC=/2+/BPC

Z1=Z2+Z3.

【點(diǎn)睛】本題利用"豬蹄模型”及其變式考查了利用平行線的性質(zhì)求角之間的數(shù)量關(guān)系,準(zhǔn)確的作出輔助線

和找到對(duì)應(yīng)的內(nèi)錯(cuò)角是解決本題的關(guān)鍵.

6.(2023春?七年級(jí)課時(shí)練習(xí))已知直線2W/M鰭是截線,點(diǎn)〃在直線/反切之間.

(1)如圖1,連接磁弧求證:/AGM+/CHM;

(2)如圖2,在NG/的角平分線上取兩點(diǎn)欣Q,使得/4GM=/HGQ.試判斷/〃與NG例之間的數(shù)量關(guān)系,并

說明理由.

【答案】(1)證明見詳解

⑵NGQH=180。-NM;理由見詳解

【分析】(1)過點(diǎn)M作肱V〃/3,由A8〃CD,可知〃翹CD.由此可知:/AGM=/GMN,

NCHM=ZHMN,故//GM+ZCHM=ZGMN+ZHMN=ZM.

(2)由⑴可知+再由=//倒仁/以泡可知:

/M=/HG0+/G必f,利用三角形內(nèi)角和是RO。,可得NG2〃=18(r_NM.

解:如圖:過點(diǎn)〃作腸V〃力力

,-?MN//aBCD,

11/81

第11頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

,-,ZAGM=ZGMN,ZCHM=AHMN,

???ZM=ZGMN+ZHMN,

.??ZM=ZAGM+ZCHM.

(2)解:NG"=180?!?〃,理由如下:

如圖:過點(diǎn)m作"N〃48,

由(1)知ZM=ZAGM+ZCHM,

?:HM平分4GHC,

?-Z?CHM=ZGHM,

':/AGM=/HGQ,

...NM=ZHGQ+ZGHM

...ZHGQ+ZGHM+ZGQH=180°

...ZGQH=180°-ZM

【點(diǎn)睛】本題考查了利用平行線的性質(zhì)求角之間的數(shù)量關(guān)系,正確的作出輔助線是解決本題的關(guān)鍵,同時(shí)這

也是比較常見的幾何模型"豬蹄模型”的應(yīng)用.

7.(2023春?全國?七年級(jí)專題練習(xí))閱讀下面內(nèi)容,并解答問題.

已知:如圖1,,直線EF分別交,CD于點(diǎn)£,NBEF的平分線與NDFE的平分線交于

點(diǎn)G.

(1)求證:EG工FG;

(2)填空,并從下列①、②兩題中任選一題說明理由.我選擇—題.

①在圖1的基礎(chǔ)上,分別作NBEG的平分線與NDFG的平分線交于點(diǎn)M,得到圖2,則NEMF的度數(shù)為

②如圖3,WCR直線E尸分別交N5,CD于點(diǎn)E,廠.點(diǎn)°在直線。之間,且在直線E尸右側(cè),

/BEO的平分線與NDFO的平分線交于點(diǎn)P,則AEOF與ZEPF滿足的數(shù)量關(guān)系為—.

【答案】(1)見解析

12/81

第12頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

(2)①45°;②結(jié)論:AEOF=2AEPF

【分析】(1)利用平行線的性質(zhì)解決問題即可;

⑵①利用基本結(jié)論“MF=ZBEM+ZMFD求解即可;②利用基本結(jié)論NEOF=NBEO+NDFO,

ZEPF=NBEP+ND",求解即可.

【詳解】⑴證明:如圖,過G作G“口力巴

ABQCD

>

/.ABHGHUCD

>

;.NBEG=NEGH,NDFG=/FGH

.../BEF+NDFE=180。

EG平分NBEF,FG平分ZDFE,

NGEB=-ZBEFZGFD=-ZDFE

2,2,

NGEB+ZGFD=-ZBEF+-ZDFE=-(ZBEF+NDFE)=90°

一,

在/\£尸6中,ZGEF+ZGFE+ZG=180°?

/.ZEGF=NGEB+ZGFD=90°

EGLFG-

⑵解:①如圖2中,由題意,ZBEG+N。尸G=90。,

EM平分/BEG,MF平分NDFG,

NBEM+ZMFD=-(ZBEG+NDFG)=45°

一,

/./EMF=ZBEM+/MFD=45°

故答案為:45°;

②結(jié)論:NEOF=2NEPF.

理由:如圖3中,由題意,NEOF=NBEO+ZDFOtNEPF=NBEP+NDFP,

PE平分NBEO,PF平分ZDFO,

NBEO=1/.BEP,NDFO=2NDFP,

/EOF=2/EPF

故答案為:NEOF=2NEPF.

【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,角平分線的性質(zhì),垂直的定義,解題的關(guān)鍵是熟練掌握相關(guān)的性

質(zhì).

13/81

第13頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

8.(2023春?江蘇?七年級(jí)專題練習(xí))如圖1,/尸/3=130。,/尸CD=120。,求//PC的度數(shù).小

明的思路是:如圖2,過P作PE//AB,通過平行線性質(zhì)可求//PC的度數(shù).

(1)請(qǐng)你按小明的思路,寫出/'PC度數(shù)的求解過程;

⑵如圖3,/引/8,點(diǎn)戶在直線8。上運(yùn)動(dòng),記=/尸。。=/4

①當(dāng)點(diǎn)P在線段8。上運(yùn)動(dòng)時(shí),則//PC與/a、/B之間有何數(shù)量關(guān)系?請(qǐng)說明理由;

②若點(diǎn)P不在線段BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出//PC與/a、4之間的數(shù)量關(guān)系.

【答案】⑴見解析;⑵①ZAPC=*+也見解析;②4Ape=々-"I

【分析】(1)過尸作PEHAB,利用平行線的性質(zhì)即可得出答案;

(2)①過P作PEHAB,再利用平行線的性質(zhì)即可得出答案?,②分P在BD延長線上和P在DB延長線上兩種情

況進(jìn)行討論,結(jié)合平行線的性質(zhì)即可得出答案

【詳解】解:⑴如圖2,過P作PEHAB

QABIICD

PEHABHCD

/.ZPAB+AAPE=\^°

/PCD+/CPE=18G0

vZPAB=1300,ZPCZ>=120°,

:"APE=50。,NCPE=60。,

ZAPC=NAPE+NCPE=110°

⑵①、"=

14/81

第14頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

理由:如圖3,過產(chǎn)作

QAB//CD

/.ABIIPEIICD

:.Nci=NAPE,〃=,

NAPC=NAPE+ZCPE=Za+Z/?.

②ZAPC=\Za-Z/3\

如備用圖1,當(dāng)尸在8。延長線上時(shí),"PC=Na-/4;

理由:如備用圖1,過戶作PG為8,

QiABIICD

/.ABHPGHCD

:.Za=ZAPG,2。=NCPG,

ZAPC=ZAPG-ZCPG=

如備用圖2所示,當(dāng)尸在延長線上時(shí),=;

理由:如備用圖2,過戶作尸G%3,

QAB//CD

ABUPGUCD

:.Za=ZAPG,Z/3=ZCPG,

15/81

第15頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

NAPC=ZCPG-ZAPG=/£一/a.

綜上所述,"PC引"一”.

【點(diǎn)睛】本題考查的是平行線的性質(zhì),解題的關(guān)鍵是過尸作尸£/"8.

9.(2023春?七年級(jí)課時(shí)練習(xí))請(qǐng)?jiān)跈M線上填上合適的內(nèi)容.

⑴如圖⑴己知〃8,則^B+ZD=/BED.

解:過點(diǎn)£作直線

:.NFEB=().()

AB//CDEF//AB,

/.()//().(如果兩條直線和第三條直線平行,那么這兩直線平行)

:4FED=1).().

/B+/D=NBEF+ZFED.

/.NB+ND=NBED.

⑵如圖②,如果4B//CD,則/B+/BED+ZZ)=()

【答案】(1)/區(qū)兩直線平行,內(nèi)錯(cuò)角相等,EF,CD,兩直線平行,內(nèi)錯(cuò)角相等;

(2)360°

【分析】⑴過點(diǎn)£作直線哥”451,則/在生/應(yīng)繼而由庚〃切可得/9=/〃所以

4B+/2/BER4FED,即/班N氏/戚;

⑵過點(diǎn)£作直線用〃曲則/圈外/戶180°,繼而由打〃切可得/在沙/氏180°.所以

/班/薇葉/JW=360°,即/班/應(yīng)9■/氏360°.

【詳解】解:⑴解:過點(diǎn)£作直線第〃居.

氏(兩直線平行,內(nèi)錯(cuò)角相等)

':AB//CD,EF//AB,

:.哥、〃5(如果兩條直線和第三條直線平行,那么這兩直線平行).

:./FE2ND(兩直線平行,內(nèi)錯(cuò)角相等).

/及4FNBEF+2FED.

:.NB+/D=2BED.

故答案為:/B,兩直線平行,內(nèi)錯(cuò)角相等,EF,CD,AD,兩直線平行,內(nèi)錯(cuò)角相等;

⑵解:過點(diǎn)£作直線如〃如圖.

“/廬180°.兩直線平行,內(nèi)錯(cuò)角相等).

16/81

第16頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

':AB//CD,EF//AB,

:.EF//5(如果兩條直線和第三條直線平行,那么這兩直線平行).

N曲/氏180°(兩直線平行,內(nèi)錯(cuò)角相等).

:./孫■/決4BEF+/FED=360°.

:./孫/BE況/D=360°.

故答案為:360°.

【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),平行公理及其推論,熟練掌握平行線判定、性質(zhì)說理是關(guān)鍵.

10.(2023春?七年級(jí)課時(shí)練習(xí))如圖1,44/勿£是/旦切之間的一點(diǎn).

圖1圖2圖3

(1)判定/掰笈應(yīng)與//初之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,若/掰£應(yīng)的角平分線交于點(diǎn)內(nèi)直接寫出與/力切之間的數(shù)量關(guān)系;

(3)將圖2中的射線2c沿"翻折交"'于點(diǎn)G得圖3,若N40的余角等于2/£的補(bǔ)角,求/力£的大小.

[答案](1)ZBAE+ZCDE=ZAED.

ZAFD=-ZAED

⑵2;

(3)ZBAE=60°

【分析】⑴作庚〃相,如圖1,則必〃/利用平行線的性質(zhì)得/1=N協(xié)£/2=/0我從而得到

ABAE+ZCD^ZAED

(2)如圖2,由(1)的結(jié)論得/加次萬ZBAE,/①佇萬ZCDE,則//吩萬(/54a/松,加上⑴的結(jié)論得到

4AFD=32AED;

⑶由⑴的結(jié)論得//吩/的4/切G,利用折疊性質(zhì)得/繆我再利用等量代換得到//吩2//勿

3

萬/掰£加上90°-//6氏180°-2//必從而計(jì)算出/胡£的度數(shù).

【詳解】/BAE+/CD氏/AED

理由如下:

作分7〃//如圖1

':AB//CD

17/81

第17頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

:.EF//CD

BAE,乙2:4CDE

:.ZBAE+ZCDE^AAED

(2)如圖2,由(1)的結(jié)論得

AAFD=ZBAF+ZCDF

?:NBAE、/儂的兩條平分線交于點(diǎn)6

2x

:./BA氏3ABAE,ACDF^.ZCDE

降萬(/BAE+/CDa

?:4BAE+4CD償4AED

2

/.NAFD=3AAED

(3)由⑴的結(jié)論得的

而射線DC沿座翻折交/尸于點(diǎn)G

:"CD4NCDF

113

:.NAGD=4BAR4/CD23Z.BAE+2/CD齦ZBAE+2(ZAED-ABAS)=2AAED-2Z.BAE

V90°-//。180°-2ZAED

3

;.90°~2ZAED^ZBA^180°-2ZAED

,/掰良60。

【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)

角相等.

11.(2023春?七年級(jí)課時(shí)練習(xí))已知AB//CD.

⑴如圖1,£為幽切之間一點(diǎn),連接能應(yīng);得到/質(zhì).求證:/幽”/班/〃;

⑵如圖,連接AD,BC,BF平分/ABC,DF平■分4ADC,且BF,如所在的直線交于點(diǎn)F.

①如圖2,當(dāng)點(diǎn)方在點(diǎn)4的左側(cè)時(shí),若//比'=50°,//%=60°,求/〃。的度數(shù).

②如圖3,當(dāng)點(diǎn)6在點(diǎn)A的右側(cè)時(shí),設(shè)a,/ADC=B,請(qǐng)你求出/班》的度數(shù).(用含有a,B的式子

表示)

18/81

第18頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

圖3

【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;

(2)①如圖2,過點(diǎn)F作FE//AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)乙4BC=50。,/ADC=60°,根據(jù)平行線的性

質(zhì)及角平分線的定義即可求/2即的度數(shù);

②如圖3,過點(diǎn)E作EF///B,當(dāng)點(diǎn)8在點(diǎn)A的右側(cè)時(shí),N4BC=a,//℃=/,根據(jù)平行線的性質(zhì)及角平分

線的定義即可求出NBFD的度數(shù).

【詳解】解:⑴如圖1,過點(diǎn)E作跖///氏

圖1

則有4跖=4,

vAB//CD

:.EF//CD

:.ZFED=ZD}

/BED=ZBEF+/FED=ZB+ZD-

⑵①如圖2,過點(diǎn)F作FE//AB,

有/BFE=ZFBA.

vABI/CD

:.EF!/CD

19/81

第19頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

/.ZEFD=ZFDC.

ZBFE+ZEFD=ZFBA+ZFDC.

即ZBFD=ZFBA+ZFDC,

BF平分NABCDF平分ZADC,

/.ZFBA=-/ABC=25°ZFDC=-ZADC=30°

2,2,

NBFD=ZFBA+ZFDC=55°.

答:乙BED的度數(shù)為55。;

②如圖3,過點(diǎn)尸作FE///2,

4B

DC

圖3

有ZBFE+ZFBA=180°.

/BFE=180。一/FBA

vAB//CD

:.EF//CD.

/.ZEFD=ZFDC.

ZBFE+ZEFD=180°-ZFBA+ZFDC.

即/BFD=180?!猌FBA+ZFDC,

BF平分NABC,DF平分ZADC,

:.AFBA=-AABC=-a/FDcJ/ADcJ。

22,22,

:.ZBFD=lSO°-ZFBA+ZFDC=18O°-^a+^/3

180°--(z+-^

答:/ATO的度數(shù)為22.

【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).

12.(2023春?七年級(jí)課時(shí)練習(xí))已知徽點(diǎn)〃在"上,點(diǎn)兒在切上.

(1)如圖1中,NBME、/£、/品?的數(shù)量關(guān)系為:;(不需要證明)

如圖2中,/6妒、/F、的數(shù)量關(guān)系為:;(不需要證明)

⑵如圖3中,超平分奶平分/磁;且2/£+//=180°,求/砸1的度數(shù);

20/81

第20頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

⑶如圖4中,NBME=60°,EF平■分乙MEN,NP平■6/END,且EQ//NP,則/版的大小是否發(fā)生變化,若變化,

請(qǐng)說明理由,若不變化,求出/比0的度數(shù).

【答案】(X)4BME=/MEN-/END;/BMF=4MFN+/FND-,②\20°;(3)不變,30°

【分析】(1)過£作EH//AB,易得EH//AB//CD,根據(jù)平行線的性質(zhì)可求解;過戶作FH//AB,易得FH//AB//CD,

根據(jù)平行線的性質(zhì)可求解;

(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(/掰升/硼?)+/用e//W=180°,可求解/川批60°,進(jìn)而可

求解;

(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知N在0萬ABME,進(jìn)而可求解.

【詳解】解:⑴過夕作曲〃絲如圖1,

:?/BME=/MEH,

9:AB//CD,

:.HE"CD,

:./END=/HEN,

:,/MEN=ZMEH+/HEN=ZBME+/END,

郎4BME=4MEN-ZEND.

如圖2,過分作制〃必

:?/BMF=/MFK,

':AB//CD,

:.FH//CD,

:.AFND=AKFN,

:?/MFN=/MFK-ZKFN=ABMF-/FND,

21/81

第21頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

即:2BMF=/MFN+/FND.

圖2

故答案為/腌=/〃皿-/END;ABMF=ZMFN+AFND.

②由(。得/BME=/MEN-/END;NBMF=NMFN+/FND.

■:NE平■貨乙FND,MB平■殳4FME,

:.NFME=/BME+ABMF,4FND=AFNE+/END,

.:2Z_MENWMFN=18S,

:.2叱BME+/END)+/BMF-NFNg\3Q°,

:.24BME+24END+4BMF-Z.FND=\30°,

於2/BMF+/FND+/BMF-/FNA\BQ°,

解得/頗'=60°,

:./FME=2/BMF=120°;

⑶/戰(zhàn)的大小沒發(fā)生變化,/冏片30°.

由(1)知:2MEN=/BME+/END,

■:EF平分/MEN,NP平■分■匕END,

/.4FEN=24MEN=2(/BME+4END),/ENP=2/END,

':EQ//NP,

:.ANEQ=AENP,

j__L

/./FEQ=/FEN-4NEQ=2叱BME+/END)-2/END=2ABME,

■:/BME=60°,

:.AFEQ=^-X60°=30°.

【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.

13.(2023春?七年級(jí)課時(shí)練習(xí))如圖1,點(diǎn)A、8分別在直線G”、MN上,ZGAC=ZNBD,=ZD

22/81

第22頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

圖1圖2圖3

⑴求證:GH//MN提示:可延長NC交于點(diǎn)尸進(jìn)行證明)

(2)如圖2,/£平分/GZC,DE平分4BOC,若乙4EQ=/G/C,求/G/C與//CD之間的數(shù)量關(guān)系;

ZKAG=-ZGAC

⑶在⑵的條件下,如圖3,"平分點(diǎn)K在射線3F上,3,若//K8=//CD,直接

寫出/GZC的度數(shù).

(540Y[540]°

【答案】⑴見解析;⑵4cO=3NG4C,見解析;(3)119)或123J.

【分析】(1)根據(jù)平行線的判定與性質(zhì)求證即可;

(2)根據(jù)三角形的內(nèi)角和為180°和平角定義得到乙4QOMNE+NE/。,結(jié)合平行線的性質(zhì)得到

NBOQ=NE+N"Q,再根據(jù)角平分線的定義證得/CD8=2/E+/G/C,結(jié)合已知即可得出結(jié)論;

(3)分當(dāng)K在直線G”下方和當(dāng)K在直線G"上方兩種情況,根據(jù)平行線性質(zhì)、三角形外角性質(zhì)、角平分線

定義求解即可.

【詳解】解:(1)如圖1,延長/c交MV于點(diǎn)尸,

圖1

???ZACD=ZC,

,?,AP//BD,

?-?ZNBD=ZNPA,

???ZGAC=ZNB,D

?-Z,GAC=ZNPA,

???GH//MN,.

⑵延長ZC交九加于點(diǎn)P,交DE于點(diǎn)0,

23/81

第23頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

圖2

??NE+NEAQ+NAQE=180°NAQE+ZAQD=180°

?,,

.?.ZAQD=ZE+ZEAQ

??APIIBD

,ZAQD=ABDQ

.?.ZBDQ=ZE+ZEAQ

?.?/E平分/G/C,DE平分/BDC,

.??ZGAC=2ZEAQ,ZCDB=2ZBDQ

,?,ZCDB=2ZE+ZGAC,

???NAED=NGAC,/ACD=/CDB,

,-?ZACD=2ZGAC+ZGAC=3ZGAC,.

⑶當(dāng)K在直線GH下方時(shí),如圖,設(shè)射線BF交GH于I,

???GH//MN,

AAIB=ZFBM,

BF平分ZMBD,

/.DBF=NFBM=-(180°-NDBN)

,,2,

.?.ZAIB=/DBF,

???ZAIB+ZKAG=ZAKB,ZAKB=/ACD

,-,ZACD=ZDBF+ZKAG,

24/81

第24頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

ZKAG=-ZGAC

3,ZGAC=ZNBD,

g/G/C+1(180°-NDBN)=ZACD=3ZGAC

-ZGAC+90°--ZGAC=3ZGAC

即32

540

ZGAC=

19~

解得:

=-(1800-ZDBN)=ZAKB+ZKAG

當(dāng)K在直線GH上方時(shí),如圖,同理可證得2

3ZGAC+-ZGAC=-(180°-NGAC)

則有32,

綜上,故答案為1191或123).

【點(diǎn)睛】本題考查平行線的判定與性質(zhì)、角平分線的定義、三角形的外角性質(zhì)、三角形的內(nèi)角和定理、平

角定義、角度的運(yùn)算,熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用是解答的關(guān)鍵.

14.(2023春?七年級(jí)課時(shí)練習(xí))已知AB//CD,//龍的角分線與/儂的角分線相交于點(diǎn)F.

⑴如圖1,若肱如分別是//郎和/物的角平分線,且/族=100°,求/〃的度數(shù);

⑵如圖2,若/ABF,ZCDM^ACDF,/BEAa°,求/〃的度數(shù);

(3)若/月酬三〃/ABF,Z.CDM=n/0我請(qǐng)直接寫出/〃與/版之間的數(shù)量關(guān)系.

25/81

第25頁共81頁

(中考數(shù)學(xué)復(fù)習(xí))重難點(diǎn)01平行線(四種模型)(解析版)

360。--

【答案】(1)65°(2)6(3)2〃/冊(cè)/瓦爐360°

【分析】(1)首先作尾〃4?,方〃/旦利用平行線的性質(zhì)可得//冊(cè)/%260。,再利用角平分線的定義得

到/廝廬130。,從而得到/弧?的度數(shù),再根據(jù)角平分線的定義可求/〃的度數(shù);

(2)先由已知得到//g6N/颯/CDE=6/CDM,由(1)得//冊(cè)片360°-ABED,/旭/AB嶺/CDM,等量

代換即可求解;

(3)先由已知得至尸=2CDF="NCDM,由(2)的方法可得到2〃/爐/9=360°.

【詳解】解:⑴如圖1,作EG//48,切〃

圖1

-??AB//CD,

,-,EG//FHCD,

,?,ZABF=ZBFH,NCDF=NDFH,NABE+NBEG=180°,NGED+NCDE=180°

,?,ZABE+ZBEG+AGED+ZCDE=360°,

???/BED=/BEG+ZDEG=100,°

,?,ZABE+ZCDE=260°,

???NABE的角平分線和"DE的角平分線相交于F,

,??/ABF+NCDF=130。,

,",ZBFD=ABFH+ZDFH=130°,

VBM、DM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論