版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省南陽市六校2025年高三開學(xué)數(shù)學(xué)試題復(fù)習(xí)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標是()A. B. C. D.2.已知,則不等式的解集是()A. B. C. D.3.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.4.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③5.已知集合,,,則集合()A. B. C. D.6.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.7.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.8.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.9.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.10.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.11.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.1012.已知向量滿足,且與的夾角為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設(shè)為曲線上的動點,求點到直線距離的最小值及此時點的坐標.14.已知集合,若,且,則實數(shù)所有的可能取值構(gòu)成的集合是________.15.在中,已知,則的最小值是________.16.已知一個正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.18.(12分)2019年6月,國內(nèi)的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時間,完成了技術(shù)上的飛躍,躋身世界先進水平.為了解高校學(xué)生對的消費意愿,2019年8月,從某地在校大學(xué)生中隨機抽取了1000人進行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級時間的早晚與大學(xué)生愿意為套餐支付更多的費用作比較,可得出下圖的關(guān)系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).(1)從該地高校大學(xué)生中隨機抽取1人,估計該學(xué)生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學(xué)生都已簽約套餐,能否認為樣本中早期體驗用戶的人數(shù)有變化?說明理由.19.(12分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點與極值.(2)當(dāng),時,證明:.20.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.22.(10分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標是.故選:A.本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.2.A【解析】
構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關(guān)于原點對稱,所以圖像關(guān)于對稱.不等式等價于,等價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.3.D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.4.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.5.D【解析】
根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.本題考查集合的混合運算,屬基礎(chǔ)題.6.A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.7.C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.8.A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當(dāng)且僅當(dāng)時等號成立,即時取得最小值.故選:A本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計算能力,屬于基礎(chǔ)題型.9.D【解析】由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故選D.10.D【解析】
通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.11.C【解析】
畫出函數(shù)和的圖像,和均關(guān)于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.本題考查了方程解的問題,意在考查學(xué)生的計算能力和應(yīng)用能力,確定函數(shù)關(guān)于點中心對稱是解題的關(guān)鍵.12.A【解析】
根據(jù)向量的運算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.本題主要考查數(shù)量積的運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.(1),;(2),.【解析】
(1)利用代入消參的方法即可將兩個參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點到直線的距離公式,將問題轉(zhuǎn)化為求解二次函數(shù)最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設(shè)點.點到直線的距離.當(dāng)時,,所以點到直線的距離的最小值為.此時點的坐標為.本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問題,屬中檔題.14..【解析】
化簡集合,由,以及,即可求出結(jié)論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實數(shù)所有的可能取值構(gòu)成的集合是.故答案為:.本題考查集合與元素的關(guān)系,理解題意是解題的關(guān)鍵,屬于基礎(chǔ)題.15.【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.16.【解析】
如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),,,,,,.故答案為:.本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)乙同學(xué)正確;(2).【解析】
(1)根據(jù)變量且有線性負相關(guān)關(guān)系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數(shù)據(jù),計算出誤差,求得“理想數(shù)據(jù)”的個數(shù),由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負相關(guān)關(guān)系,故甲不正確,,代入兩個回歸方程,驗證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數(shù)據(jù)如下表:021212由上表可知,“理想數(shù)據(jù)”的個數(shù)為.用列舉法可知,從個不同數(shù)據(jù)里抽出個不同數(shù)據(jù)的方法有種.從符合條件的個不同數(shù)據(jù)中抽出個,還要在不符合條件的個不同數(shù)據(jù)中抽出個的方法有種.故所求概率為本小題主要考查回歸直線方程的判斷,考查古典概型概率計算,考查數(shù)據(jù)處理能力,屬于中檔題.18.(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化,詳見解析【解析】
(1)由從高校大學(xué)生中隨機抽取1人,該學(xué)生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應(yīng)的概率,得到隨機變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機抽取1人,該學(xué)生在2021年或2021年之前升級到的概率估計為樣本中早期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認為早期體驗用戶人數(shù)增加.本題主要考查了離散型隨機變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對于求離散型隨機變量概率分布列問題首先要清楚離散型隨機變量的可能取值,計算得出概率,列出離散型隨機變量概率分布列,最后按照數(shù)學(xué)期望公式計算出數(shù)學(xué)期望,其中列出離散型隨機變量概率分布列及計算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.19.(1)極小值點為,極小值為,無極大值;(2)證明見解析【解析】
先對函數(shù)求導(dǎo),結(jié)合已知及導(dǎo)數(shù)的幾何意義可求,結(jié)合單調(diào)性即可求解函數(shù)的極值點及極值;令,問題可轉(zhuǎn)化為求解函數(shù)的最值,結(jié)合導(dǎo)數(shù)可求.【詳解】(1)由題得函數(shù)的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調(diào)遞增.令,得∴在上單調(diào)遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調(diào)遞增又,∴在上恒成立∴在上恒成立∴,即∴本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問題,考查利用導(dǎo)數(shù)證明不等式,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.20.(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結(jié)論;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級上冊全部數(shù)學(xué)試卷
- 寶雞渭濱區(qū)數(shù)學(xué)試卷
- 新零售的實體店數(shù)字化改造及運營策略計劃
- 2024年大學(xué)生創(chuàng)新創(chuàng)業(yè)大賽獲獎項目策劃書
- 石材露臺改造施工方案
- 智能設(shè)備銷售與售后服務(wù)協(xié)議
- 網(wǎng)絡(luò)安全技術(shù)研發(fā)合同
- 為完成兒子“心愿”-91歲老太欲與孫女做親子鑒定
- 做賬實操-動漫公司與周邊產(chǎn)品生產(chǎn)商財務(wù)結(jié)算協(xié)議
- 金融服務(wù)行業(yè)數(shù)字化轉(zhuǎn)型實踐指南
- 安置房項目二次結(jié)構(gòu)磚砌體工程專項施工方案培訓(xùn)資料
- SB/T 10756-2012泡菜
- GB/T 20492-2006鋅-5%鋁-混合稀土合金鍍層鋼絲、鋼絞線
- 公司變更評審表
- 醫(yī)院輸血質(zhì)量管理考核標準
- 七年級語文上冊:15、《古代詩歌四首》教案
- 自由戰(zhàn)爭-簡體素材表
- 氣道評估與處理課件
- 腦血管病的介入診療課件
- 新概念第三冊課文60全(打印版)
- 四年級硬筆書法教案教學(xué)設(shè)計共16課
評論
0/150
提交評論