




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣西北海銀海區(qū)五校聯(lián)考2023-2024學年中考數(shù)學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.2.化簡:(a+)(1﹣)的結果等于()A.a(chǎn)﹣2 B.a(chǎn)+2 C. D.3.方程x2﹣kx+1=0有兩個相等的實數(shù)根,則k的值是()A.2 B.﹣2 C.±2 D.04.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應的點是()A.點A B.點B C.點C D.點D5.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°6.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.7.如圖是由若干個相同的小正方體搭成的一個幾何體的主視圖和俯視圖,則所需的小正方體的個數(shù)最少是()A. B. C. D.8.如圖,在中,,的垂直平分線交于點,垂足為.如果,則的長為()A.2 B.3 C.4 D.69.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×10610.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.311.下列說法正確的是()A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是12.如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知反比例函數(shù)y=,當x>0時,y隨x增大而減小,則m的取值范圍是_____.14.如圖,把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.15.已知是整數(shù),則正整數(shù)n的最小值為___16.若,,則的值為________.17.化簡:=__________.18.因式分解:3x2-6xy+3y2=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1所示,點E在弦AB所對的優(yōu)弧上,且BE為半圓,C是BE上的動點,連接CA、CB,已知AB=4cm,設B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;結合函數(shù)圖象,解決問題:①連接BE,則BE的長約為cm.②當以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為cm.20.(6分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數(shù)量關系.②猜測線段AF,BF與CE的數(shù)量關系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.21.(6分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.22.(8分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.23.(8分)解方程式:-3=24.(10分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.25.(10分)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結果繪制了如圖統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學生人數(shù)是多少人;(2)補全條形統(tǒng)計圖;(3)若該校共有2000名學生,請根據(jù)統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.26.(12分)數(shù)學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數(shù)式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數(shù)式;若x是方程1x=﹣x﹣9的解,求紙片①上代數(shù)式的值.27.(12分)某中學采用隨機的方式對學生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關信息解答:(1)接受測評的學生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學生1200人,請估計該校對安全知識達到“良”程度的人數(shù);(3)測評成績前五名的學生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.2、B【解析】
解:原式====.故選B.考點:分式的混合運算.3、C【解析】
根據(jù)已知得出△=(﹣k)2﹣4×1×1=0,解關于k的方程即可得.【詳解】∵方程x2﹣kx+1=0有兩個相等的實數(shù)根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故選C.【點睛】本題考查了根的判別式的應用,注意:一元二次方程ax2+bx+c=0(a、b、c為常數(shù),a≠0),當b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;當b2﹣4ac=0時,方程有兩個相等的實數(shù)根;當b2﹣4ac<0時,方程無實數(shù)根.4、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最小.故選B.5、D【解析】試題分析:數(shù)據(jù)28°,27°,30°,33°,30°,30°,32°的平均數(shù)是(28+27+30+33+30+30+32)÷7=30,30出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是30;故選D.考點:眾數(shù);算術平均數(shù).6、B【解析】
設大馬有匹,小馬有匹,根據(jù)題意可得等量關系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.7、B【解析】
主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】綜合主視圖和俯視圖,底層最少有個小立方體,第二層最少有個小立方體,因此搭成這個幾何體的小正方體的個數(shù)最少是個.故選:B.【點睛】此題考查由三視圖判斷幾何體,解題關鍵在于識別圖形8、C【解析】
先利用垂直平分線的性質(zhì)證明BE=CE=8,再在Rt△BED中利用30°角的性質(zhì)即可求解ED.【詳解】解:因為垂直平分,所以,在中,,則;故選:C.【點睛】本題主要考查了線段垂直平分線的性質(zhì)、30°直角三角形的性質(zhì),線段的垂直平分線上的點到線段的兩個端點的距離相等.9、C【解析】解:,故選C.10、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.11、B【解析】
分別用方差、全面調(diào)查與抽樣調(diào)查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調(diào)查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件,解題的關鍵是熟練的掌握概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件.12、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m>1.【解析】分析:根據(jù)反比例函數(shù)y=,當x>0時,y隨x增大而減小,可得出m﹣1>0,解之即可得出m的取值范圍.詳解:∵反比例函數(shù)y=,當x>0時,y隨x增大而減小,∴m﹣1>0,解得:m>1.故答案為m>1.點睛:本題考查了反比例函數(shù)的性質(zhì),根據(jù)反比例函數(shù)的性質(zhì)找出m﹣1>0是解題的關鍵.14、1【解析】
由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關鍵.15、1【解析】
因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),
∴是整數(shù),即1n是完全平方數(shù);
∴n的最小正整數(shù)值為1.
故答案為:1.【點睛】主要考查了二次根式的定義,關鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù)進行解答.16、-.【解析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.17、a+b【解析】
將原式通分相減,然后用平方差公式分解因式,再約分化簡即可。【詳解】解:原式====a+b【點睛】此題主要考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.18、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點:提公因式法與公式法的綜合運用三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解析】
(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象即可;(3)①∵BC=6時,CD=AC=4.1,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.1.【詳解】(1)由表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補充完整如下表:(2)描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象如圖2所示:(3)①∵BC=6cm時,CD=AC=4.1cm,即點C與點E重合,CD與AC重合,BC為直徑,∴BE=BC=6cm,故答案為:6;②以A、B、C為頂點組成的三角形是直角三角形時,分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6cm;當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6cm,由圖象可得:BC=4.1cm;綜上所述:BC的長度約為6cm或4.1cm;故答案為:6或4.1.【點睛】本題是圓的綜合題目,考查了勾股定理、探究試驗、函數(shù)以及圖象、圓的對稱性、直角三角形的性質(zhì)、分類討論等知識;本題綜合性強,理解探究試驗、看懂圖象是解題的關鍵.20、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】
(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點睛】本題考查幾何變換綜合題、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理、等腰直角三角形的性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.21、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】
連接由題意可證明,于是得到,由等腰三角形三線合一的性質(zhì)可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;先求得BE的長,然后證明∽,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.【詳解】直線l與相切.理由:如圖1所示:連接OE.平分,.,.,.直線l與相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案為:(1)直線l與相切,見解析;(2)見解析;(3)AF=.【點睛】本題主要考查的是圓的性質(zhì)、相似三角形的性質(zhì)和判定、等腰三角形的性質(zhì)、三角形外角的性質(zhì)、切線的判定,證得是解題的關鍵.22、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.23、x=3【解析】
先去分母,再解方程,然后驗根.【詳解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,經(jīng)檢驗,x=3是原方程的根.【點睛】此題重點考察學生對分式方程解的應用,掌握分式方程的解法是解題的關鍵.24、(1)任意實數(shù);(2);(3)見解析;(4)①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【解析】
(1)沒有限定要求,所以x為任意實數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點,連線即可解題,(4)看圖確定極點坐標,即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實數(shù);故答案為任意實數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.故答案為①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【點睛】本題考查了函數(shù)的圖像和性質(zhì),屬于簡單題,熟悉函數(shù)的圖像和概念是解題關鍵.25、(1)本次抽樣調(diào)查中的學生人數(shù)為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4).【解析】
(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總人數(shù);(2)先計算出選“舞蹈”的人數(shù),再計算出選“打球”的人數(shù),然后補全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計該校課余興趣愛好為“打球”的學生人數(shù);(4)畫樹狀圖展示所有12種等可能的結果數(shù),再找出選到一男一女的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調(diào)查中的學生人數(shù)為100人;(2)選”舞蹈”的人數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度企業(yè)社會責任宣傳合同
- 二零二五年度企業(yè)內(nèi)部員工保密協(xié)議制定與作用探討
- 2025年度汽車制造公司研發(fā)工程師崗位聘用合同
- 二零二五年度醫(yī)療衛(wèi)生單位會計代賬成本核算管理合同
- 二零二五年度手房過戶房產(chǎn)交易糾紛調(diào)解合同協(xié)議
- 《記承天寺夜游》教學設計-2024-2025學年統(tǒng)編版語文八年級上冊
- 2025年臥式螺旋離心脫水機合作協(xié)議書
- 第三單元第十五課《認識基本的網(wǎng)絡硬件》-教學設計 2023-2024學年粵教版(2019)初中信息技術七年級上冊
- 野菊花的鑒定(中藥鑒定技術)
- 第12課 阿拉伯帝國-2024-2025學年九年級歷史上冊核心素養(yǎng)驅(qū)動教學設計
- 三年級下冊數(shù)學課件 兩位數(shù)除兩、三位數(shù) 滬教版 (共15張PPT)
- 《六大茶類》講義
- Unit 2 Listening and speaking 課件-高中英語人教版(2019)選擇性必修第二冊
- X會計師事務所的J城投公司發(fā)債審計項目研究
- 中國傳媒大學全媒體新聞編輯:案例教學-課件-全媒體新聞編輯:案例教學-第7講
- 生理學泌尿系統(tǒng)6學時課件
- PySide學習教程
- 數(shù)據(jù)結構英文教學課件:chapter1 Introduction
- 人教三年級數(shù)學下冊表格式全冊
- 優(yōu)秀教研組評比制度及實施細則
- JJF 1752-2019全自動封閉型發(fā)光免疫分析儀校準規(guī)范(高清版)
評論
0/150
提交評論