江蘇省蘇州一中2025屆高三第六次考試數學試題試卷含解析_第1頁
江蘇省蘇州一中2025屆高三第六次考試數學試題試卷含解析_第2頁
江蘇省蘇州一中2025屆高三第六次考試數學試題試卷含解析_第3頁
江蘇省蘇州一中2025屆高三第六次考試數學試題試卷含解析_第4頁
江蘇省蘇州一中2025屆高三第六次考試數學試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州一中2025屆高三第六次考試數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知滿足,則的取值范圍為()A. B. C. D.2.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種3.已知滿足,,,則在上的投影為()A. B. C. D.24.在關于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知全集,函數的定義域為,集合,則下列結論正確的是A. B.C. D.6.已知集合A={x|x<1},B={x|},則A. B.C. D.7.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.8.若函數(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應的函數值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.大衍數列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數五十”的推論,主要用于解釋我國傳統文化中的太極衍生原理,數列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數量總和.已知該數列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數列中奇數項的通項公式為()A. B. C. D.10.關于圓周率π,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.11.函數的大致圖象是()A. B.C. D.12.下列四個結論中正確的個數是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.14.在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為___________.15.某高校組織學生辯論賽,六位評委為選手成績打出分數的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數據的平均數與中位數的差為______.16.下圖是一個算法的流程圖,則輸出的x的值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網.現恰有三個團購網站在市開展了團購業(yè)務,市某調查公司為調查這三家團購網站在本市的開展情況,從本市已加入了團購網站的商家中隨機地抽取了50家進行調查,他們加入這三家團購網站的情況如下圖所示.(1)從所調查的50家商家中任選兩家,求他們加入團購網站的數量不相等的概率;(2)從所調查的50家商家中任取兩家,用表示這兩家商家參加的團購網站數量之差的絕對值,求隨機變量的分布列和數學期望;(3)將頻率視為概率,現從市隨機抽取3家已加入團購網站的商家,記其中恰好加入了兩個團購網站的商家數為,試求事件“”的概率.18.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數圖象的一條對稱軸方程為且,求的值.19.(12分)已知函數,.(1)討論函數的單調性;(2)已知在處的切線與軸垂直,若方程有三個實數解、、(),求證:.20.(12分)為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設點,若直線與曲線相交于、兩點,求的值22.(10分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

設,則的幾何意義為點到點的斜率,利用數形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.本題考查簡單線性規(guī)劃的非線性目標函數函數問題,解題時作出可行域,利用目標函數的幾何意義求解是解題關鍵.對于直線斜率要注意斜率不存在的直線是否存在.2.B【解析】

把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.本題考查排列組合,屬于基礎題.3.A【解析】

根據向量投影的定義,即可求解.【詳解】在上的投影為.故選:A本題考查向量的投影,屬于基礎題.4.C【解析】

討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.本題考查了命題的關系,考查了不等式恒成立問題.對于探究兩個命題的關系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.5.A【解析】

求函數定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等式的解集還是曲線上的點集,都由代表元決定.6.A【解析】∵集合∴∵集合∴,故選A7.C【解析】

將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.8.B【解析】

由函數的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據函數的圖象變換規(guī)律,誘導公式,得出結論.【詳解】根據已知函數其中,的圖象過點,,可得,,解得:.再根據五點法作圖可得,可得:,可得函數解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.本題主要考查由函數的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,函數的圖象變換規(guī)律,誘導公式的應用,屬于中檔題.9.B【解析】

直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.本題考查由數列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.10.D【解析】

由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區(qū)域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.11.A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.本題考查了函數圖象,屬基礎題.12.C【解析】

由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據正態(tài)分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

設,寫出直線方程代入拋物線方程后應用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結論.【詳解】拋物線的焦點坐標為,直線的方程為,據得.設,則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.本題考查拋物線的焦點弦問題,根據拋物線的定義表示出焦點弦長是解題關鍵.14.【解析】

點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.15.【解析】

先根據莖葉圖求出平均數和中位數,然后可得結果.【詳解】剩下的四個數為83,85,87,95,且這四個數的平均數,這四個數的中位數為,則所剩數據的平均數與中位數的差為.本題主要考查莖葉圖的識別和統計量的計算,側重考查數據分析和數學運算的核心素養(yǎng).16.1【解析】

利用流程圖,逐次進行運算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.本題主要考查程序框圖的識別,“還原現場”是求解這類問題的良方,側重考查邏輯推理的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)從而的分布列為012;(3).【解析】

(1)運用概率的計算公式求概率分布,再運用數學期望公式進行求解;(2)借助題設條件運用貝努力公式進行分析求解:(1)記所選取額兩家商家加入團購網站的數量相等為事件,則,所以他們加入團購網站的數量不相等的概率為.(2)由題,知的可能取值分別為0,1,2,,,從而的分布列為012.(3)所調查的50家商家中加入了兩個團購網站的商家有25家,將頻率視為概率,則從市中任取一家加入團購網站的商家,他同時加入了兩個團購網站的概率為,所以,所以事件“”的概率為.18.(1)(2)【解析】

(1)由已知利用三角函數恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數恒等變換的應用,可得,根據題意,得到,解得,得到函數的解析式,進而求得的值,利用三角函數恒等變換的應用可求的值.【詳解】(1)由題意,根據正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.本題主要考查了三角函數恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.19.(1)①當時,在單調遞增,②當時,單調遞增區(qū)間為,,單調遞減區(qū)間為(2)證明見解析【解析】

(1)先求解導函數,然后對參數分類討論,分析出每種情況下函數的單調性即可;(2)根據條件先求解出的值,然后構造函數分析出之間的關系,再構造函數分析出之間的關系,由此證明出.【詳解】(1),①當時,恒成立,則在單調遞增②當時,令得,解得,又,∴∴當時,,單調遞增;當時,,單調遞減;當時,,單調遞增.(2)依題意得,,則由(1)得,在單調遞增,在上單調遞減,在上單調遞增∴若方程有三個實數解,則法一:雙偏移法設,則∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞減,∴,即設,∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞增,∴,即∴.法二:直接證明法∵,,在上單調遞增,∴要證,即證設,則∴在上單調遞減,在上單調遞增∴,∴,即(注意:若沒有證明,扣3分)關于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴本題考查函數與倒導數的綜合應用,難度較難.(1)對于含參函數單調性的分析,可通過分析參數的臨界值,由此分類討論函數單調性;(2)利用導數證明不等式常用方法:構造函數,利用新函數的單調性確定函數的最值,從而達到證明不等式的目的.20.(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關(3)詳見解析【解析】

(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;(2)由頻率分步直方圖算出相應的頻數即可填寫列聯表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構成以2為公比的等比數列,所以,解得,所以,.故,,.(2)獲獎的人數為人,因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為,理科生的數量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯表如下:文科生理科生合計獲獎

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論