2025年高考數(shù)學(xué)一輪復(fù)習(xí) 講練測(cè)第04講 指數(shù)與指數(shù)函數(shù)(八大題型)(練習(xí))(含解析)_第1頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí) 講練測(cè)第04講 指數(shù)與指數(shù)函數(shù)(八大題型)(練習(xí))(含解析)_第2頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí) 講練測(cè)第04講 指數(shù)與指數(shù)函數(shù)(八大題型)(練習(xí))(含解析)_第3頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí) 講練測(cè)第04講 指數(shù)與指數(shù)函數(shù)(八大題型)(練習(xí))(含解析)_第4頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí) 講練測(cè)第04講 指數(shù)與指數(shù)函數(shù)(八大題型)(練習(xí))(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第04講指數(shù)與指數(shù)函數(shù)目錄TOC\o"1-2"\h\z\u模擬基礎(chǔ)練 2題型一:指數(shù)冪的運(yùn)算 2題型二:指數(shù)函數(shù)的圖象及應(yīng)用 3題型三:指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題 5題型四:比較指數(shù)式的大小 6題型五:解指數(shù)方程或不等式 7題型六:指數(shù)函數(shù)的最值與值域問(wèn)題 8題型七:指數(shù)函數(shù)中的恒成立問(wèn)題 9題型八:指數(shù)函數(shù)的綜合問(wèn)題 11重難創(chuàng)新練 15真題實(shí)戰(zhàn)練 24題型一:指數(shù)冪的運(yùn)算1.已知SKIPIF1<0,計(jì)算:SKIPIF1<0.【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.2.SKIPIF1<0.【答案】SKIPIF1<0【解析】SKIPIF1<0.故答案為:SKIPIF1<0.3.化簡(jiǎn)求值:(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0;(2)SKIPIF1<0=SKIPIF1<0題型二:指數(shù)函數(shù)的圖象及應(yīng)用4.若函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0的大致圖象是(

)A.

B.

C.

D.

【答案】A【解析】由題意函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0互為反函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,它在定義域SKIPIF1<0內(nèi)單調(diào)遞增,且過(guò)定點(diǎn)SKIPIF1<0,對(duì)比選項(xiàng)可知A符合題意.故選:A.5.要使SKIPIF1<0的圖象不經(jīng)過(guò)第一象限,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的交點(diǎn)坐標(biāo)為SKIPIF1<0,且為減函數(shù),要使SKIPIF1<0圖象不經(jīng)過(guò)第一象限,則SKIPIF1<0,解得SKIPIF1<0.故選:B.6.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象恒在函數(shù)SKIPIF1<0的圖象下方,則a的取值范圍為.【答案】SKIPIF1<0【解析】由題意,得當(dāng)SKIPIF1<0時(shí)不等式SKIPIF1<0恒成立,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,分類(lèi)討論SKIPIF1<0和SKIPIF1<0兩種情況,并在同一平面直角坐標(biāo)系中作出兩個(gè)函數(shù)的圖像,由圖像得到關(guān)于a的不等式,解不等式得解由題意,得當(dāng)SKIPIF1<0時(shí)不等式SKIPIF1<0恒成立,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,在同一平面直角坐標(biāo)系中作出兩個(gè)函數(shù)的圖象,當(dāng)SKIPIF1<0時(shí),如圖所示,由圖可知,SKIPIF1<0,SKIPIF1<0恒成立,故不滿(mǎn)足題意;當(dāng)SKIPIF1<0時(shí),如圖所示,由圖可知,要SKIPIF1<0,SKIPIF1<0恒成立,需SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0綜上可知:a的取值范圍是SKIPIF1<0.7.設(shè)SKIPIF1<0、SKIPIF1<0分別是方程SKIPIF1<0與SKIPIF1<0的根,則SKIPIF1<0.【答案】SKIPIF1<0【解析】如圖,分別作出函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,且函數(shù)SKIPIF1<0與SKIPIF1<0、SKIPIF1<0分別相交于點(diǎn)SKIPIF1<0,SKIPIF1<0.由題意SKIPIF1<0,SKIPIF1<0.而SKIPIF1<0與SKIPIF1<0互為反函數(shù),直線SKIPIF1<0與直線SKIPIF1<0互相垂直,所以點(diǎn)SKIPIF1<0與SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng).所以SKIPIF1<0.所以SKIPIF1<0.故答案為:SKIPIF1<0.題型三:指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題8.已知函數(shù)SKIPIF1<0的圖象經(jīng)過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是.【答案】SKIPIF1<0【解析】在函數(shù)SKIPIF1<0中,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,所以點(diǎn)P的坐標(biāo)是SKIPIF1<0.故答案為:SKIPIF1<09.對(duì)SKIPIF1<0且SKIPIF1<0的所有正實(shí)數(shù),函數(shù)SKIPIF1<0的圖象一定經(jīng)過(guò)一定點(diǎn),則該定點(diǎn)的坐標(biāo)是.【答案】SKIPIF1<0【解析】由函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,所以該函數(shù)恒經(jīng)過(guò)定點(diǎn)SKIPIF1<0.故答案為:SKIPIF1<0.10.已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)恒過(guò)定點(diǎn)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像不經(jīng)過(guò)第象限.【答案】二【解析】由已知條件得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0恒過(guò)點(diǎn)SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0,由于SKIPIF1<0由SKIPIF1<0向下平移五個(gè)單位得到,且過(guò)點(diǎn)SKIPIF1<0,由此可知SKIPIF1<0不過(guò)第二象限,故答案為:二.11.已知常數(shù)SKIPIF1<0且SKIPIF1<0,假設(shè)無(wú)論a取何值,函數(shù)SKIPIF1<0的圖像恒過(guò)定點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.又已知常數(shù)SKIPIF1<0且SKIPIF1<0,假設(shè)無(wú)論b取何值,函數(shù)SKIPIF1<0的圖像恒過(guò)定點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為.【答案】SKIPIF1<0【解析】由對(duì)數(shù)函數(shù)過(guò)定點(diǎn)可知:函數(shù)SKIPIF1<0的圖像恒過(guò)定點(diǎn)SKIPIF1<0,則有SKIPIF1<0,又因?yàn)橹笖?shù)函數(shù)SKIPIF1<0的圖像恒過(guò)定點(diǎn)SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,故答案為:SKIPIF1<0.題型四:比較指數(shù)式的大小12.若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】∵指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.∵冪函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.故選:A.13.(2024·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,于是SKIPIF1<0,所以SKIPIF1<0.故選:D14.已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.題型五:解指數(shù)方程或不等式15.方程SKIPIF1<0的解為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.16.方程SKIPIF1<0的解為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0且SKIPIF1<0,由指數(shù)函數(shù)的圖象和性質(zhì)可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒大于等于1,所以要使方程SKIPIF1<0有解,則有SKIPIF1<0解得:SKIPIF1<0,SKIPIF1<0,所以原方程的解為SKIPIF1<0,故答案為:SKIPIF1<0.17.不等式SKIPIF1<0的解集是.【答案】SKIPIF1<0【解析】SKIPIF1<0.故答案為:SKIPIF1<0.18.設(shè)SKIPIF1<0,則關(guān)于x的不等式SKIPIF1<0的解集是.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,且SKIPIF1<0,則根據(jù)指數(shù)函數(shù)的單調(diào)性可知,SKIPIF1<0,解得SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故答案為:SKIPIF1<0題型六:指數(shù)函數(shù)的最值與值域問(wèn)題19.函數(shù)SKIPIF1<0的最大值是.【答案】9【解析】由題可知:SKIPIF1<0,所以SKIPIF1<0又指數(shù)函數(shù)SKIPIF1<0為R上的增函數(shù),所以SKIPIF1<0的最大值為SKIPIF1<0故答案為:920.函數(shù)SKIPIF1<0的最小值是.【答案】SKIPIF1<0【解析】令t=2x,x∈[0,2],則t∈[1,4].原函數(shù)化為g(t)=t2-2t-3=(t-1)2-4,當(dāng)t=1時(shí),g(t)有最小值,即f(x)有最小值為-4.故答案為:-4.21.(2024·四川綿陽(yáng)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值域?yàn)椋敬鸢浮縎KIPIF1<0【解析】由題意可知SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得等號(hào),SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得等號(hào),故SKIPIF1<0.故答案為:SKIPIF1<0.22.設(shè)函數(shù)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),且SKIPIF1<0SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的解析式;(2)若SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,求SKIPIF1<0的值.【解析】(1)SKIPIF1<0為偶函數(shù),SKIPIF1<0,又SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,即SKIPIF1<0,②由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0.(2)SKIPIF1<0,所以,SKIPIF1<0,令SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0、SKIPIF1<0在SKIPIF1<0上均為增函數(shù),故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,對(duì)稱(chēng)軸SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),則SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍);②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,解得:SKIPIF1<0,不符合題意.綜上:SKIPIF1<0.題型七:指數(shù)函數(shù)中的恒成立問(wèn)題23.不等式SKIPIF1<0對(duì)任意SKIPIF1<0都成立,則實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】SKIPIF1<0.【解析】原不等式可化為SKIPIF1<0對(duì)SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.24.若實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0【解析】要使SKIPIF1<0在實(shí)數(shù)SKIPIF1<0時(shí)恒成立等價(jià)于SKIPIF1<0在實(shí)數(shù)SKIPIF1<0時(shí)恒成立,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0為減函數(shù),∴SKIPIF1<0在SKIPIF1<0上為減函數(shù),故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即實(shí)數(shù)a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.25.已知指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)在其定義域內(nèi)單調(diào)遞增.設(shè)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0恒成立,則x的取值范圍是.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0是指數(shù)函數(shù),所以SKIPIF1<0,解得SKIPIF1<0或者SKIPIF1<0,又因?yàn)镾KIPIF1<0在定義域內(nèi)單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,要使得SKIPIF1<0即SKIPIF1<0恒成立,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<026.已知函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的解析式;(2)若對(duì)于任意實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0是定義在實(shí)數(shù)集R上的奇函數(shù),所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以函數(shù)SKIPIF1<0的解析式為SKIPIF1<0;(2)因?yàn)閷?duì)于任意實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,所以SKIPIF1<0在R上恒成立,即SKIPIF1<0在R上恒成立,整理得SKIPIF1<0在R上恒成立,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立,從而SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,可得SKIPIF1<0的最大值為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.題型八:指數(shù)函數(shù)的綜合問(wèn)題27.(2024·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【解析】作出函數(shù)SKIPIF1<0的圖象,如圖所示.由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.由圖象易知,直線SKIPIF1<0與SKIPIF1<0的圖象有3個(gè)交點(diǎn),所以方程SKIPIF1<0有3個(gè)不同的實(shí)數(shù)根,因?yàn)榉匠蘏KIPIF1<0有7個(gè)不同的實(shí)數(shù)根,所以直線SKIPIF1<0與SKIPIF1<0的圖象有4個(gè)交點(diǎn),故SKIPIF1<0,解得SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<028.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若存在SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若不等式SKIPIF1<0,對(duì)任意的SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0有解,令SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0趨向于0或SKIPIF1<0時(shí)SKIPIF1<0趨向于SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為增函數(shù),所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,化為SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),取得最大值為SKIPIF1<0,所以SKIPIF1<0,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.29.已知函數(shù)SKIPIF1<0(1)求不等式SKIPIF1<0的解集;(2)求SKIPIF1<0的值域;(3)當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【解析】(1)由題意可得:SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,則SKIPIF1<0.因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0.故不等式SKIPIF1<0的解集為SKIPIF1<0(2)由SKIPIF1<0,得:函數(shù)定義域?yàn)镾KIPIF1<0.令SKIPIF1<0則SKIPIF1<0,SKIPIF1<0.因?yàn)槎魏瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故SKIPIF1<0的值域?yàn)镾KIPIF1<0.(3)由題意得:當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,即當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,即當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立.令SKIPIF1<0,SKIPIF1<0.因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0,解得:SKIPIF1<0故當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,SKIPIF1<0的取值范圍為SKIPIF1<0.30.(2024·河南·模擬預(yù)測(cè))已知SKIPIF1<0為定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0,且SKIPIF1<0.(1)求函數(shù)SKIPIF1<0,SKIPIF1<0的解析式;(2)求不等式SKIPIF1<0的解集.【解析】(1)由題意易知,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0為奇函數(shù),故SKIPIF1<0為奇函數(shù),又SKIPIF1<0①,則SKIPIF1<0,故SKIPIF1<0②,由①②解得SKIPIF1<0,SKIPIF1<0;(2)由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故不等式的解集為SKIPIF1<0.31.設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)是定義域?yàn)镾KIPIF1<0的奇函數(shù).(1)若SKIPIF1<0,試求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0上的最小值及取得最小值時(shí)的SKIPIF1<0的值.【解析】(1)由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù),不等式SKIPIF1<0可化為SKIPIF1<0,所以有SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以不等式的解集為SKIPIF1<0.(2)若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0取最小值-2.1.(2024·廣東茂名·模擬預(yù)測(cè))自“SKIPIF1<0”橫空出世,全球科技企業(yè)掀起一場(chǎng)研發(fā)SKIPIF1<0大模型的熱潮,隨著SKIPIF1<0算力等硬件底座逐步搭建完善,SKIPIF1<0大規(guī)模應(yīng)用成為可能,尤其在圖文創(chuàng)意、虛擬數(shù)字人以及工業(yè)軟件領(lǐng)域已出現(xiàn)較為成熟的落地應(yīng)用.SKIPIF1<0函數(shù)和SKIPIF1<0函數(shù)是研究人工智能被廣泛使用的2種用作神經(jīng)網(wǎng)絡(luò)的激活函數(shù),SKIPIF1<0函數(shù)的解析式為SKIPIF1<0,經(jīng)過(guò)某次測(cè)試得知SKIPIF1<0,則當(dāng)把變量減半時(shí),SKIPIF1<0(

)A.SKIPIF1<0 B.3 C.1 D.SKIPIF1<0或3【答案】A【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(舍).SKIPIF1<0,SKIPIF1<0.故選:A2.(2024·山東·二模)已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的充分不必要條件,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】命題SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0的充分不必要條件,顯然當(dāng)SKIPIF1<0時(shí)滿(mǎn)足SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上恒成立,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0.故選:A3.已知實(shí)數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0,得SKIPIF1<0.令SKIPIF1<0,由于SKIPIF1<0均為單調(diào)遞增函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.4.(2024·山東泰安·二模)已知函數(shù)SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以方程無(wú)解;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:D5.(2024·江西景德鎮(zhèn)·三模)已知函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0時(shí),SKIPIF1<0的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又函數(shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.即SKIPIF1<0.故選:C6.(2024·貴州畢節(jié)·三模)已知函數(shù)SKIPIF1<0是奇函數(shù),若SKIPIF1<0,則實(shí)數(shù)a的值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.0【答案】B【解析】因?yàn)楹瘮?shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),函數(shù)為增函數(shù),當(dāng)SKIPIF1<0時(shí),函數(shù)為減函數(shù),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:B7.(2024·福建南平·二模)對(duì)任意非零實(shí)數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0充分小時(shí),SKIPIF1<0.如:SKIPIF1<0,用這個(gè)方法計(jì)算SKIPIF1<0的近似值為(

)A.1.906 B.1.908 C.1.917 D.1.919【答案】C【解析】SKIPIF1<0SKIPIF1<0.故選:C.8.(2024·廣東廣州·二模)若SKIPIF1<0是方程SKIPIF1<0的實(shí)數(shù)解,則稱(chēng)SKIPIF1<0是函數(shù)SKIPIF1<0與SKIPIF1<0的“復(fù)合穩(wěn)定點(diǎn)”.若函數(shù)SKIPIF1<0且SKIPIF1<0與SKIPIF1<0有且僅有兩個(gè)不同的“復(fù)合穩(wěn)定點(diǎn)”,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0且SKIPIF1<0與SKIPIF1<0有且僅有兩個(gè)不同的“復(fù)合穩(wěn)定點(diǎn)”,SKIPIF1<0,即SKIPIF1<0有兩個(gè)不同實(shí)根,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同實(shí)根,SKIPIF1<0,則SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.9.(2024·山東濰坊·二模)已知函數(shù)SKIPIF1<0則SKIPIF1<0圖象上關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)有(

)A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)【答案】C【解析】作出SKIPIF1<0的圖象,再作出函數(shù)SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象如圖所示.因?yàn)楹瘮?shù)SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象與SKIPIF1<0圖象有三個(gè)交點(diǎn),故SKIPIF1<0圖象上關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)有3對(duì).故選:C10.(多選題)(2024·吉林長(zhǎng)春·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則下列說(shuō)法正確的是(

)A.函數(shù)SKIPIF1<0單調(diào)遞增B.函數(shù)SKIPIF1<0值域?yàn)镾KIPIF1<0C.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱(chēng)D.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱(chēng)【答案】ABD【解析】SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又內(nèi)層函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,外層函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以根據(jù)復(fù)合函數(shù)單調(diào)性的法則可知,函數(shù)SKIPIF1<0單調(diào)遞增,故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故B正確;SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),故C錯(cuò)誤,D正確.故選:ABD11.(多選題)(2024·福建廈門(mén)·三模)若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】對(duì)A:由SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故A正確;對(duì)B:由SKIPIF1<0,則SKIPIF1<0,故B錯(cuò)誤;對(duì)C:由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,故C錯(cuò)誤;對(duì)D:由SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故D正確.故選:AD.12.(多選題)(2024·云南曲靖·二模)已知集合SKIPIF1<0,定義SKIPIF1<0,則下列命題正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的全部元素之和等于3874B.若SKIPIF1<0表示實(shí)數(shù)集,SKIPIF1<0表示正實(shí)數(shù)集,則SKIPIF1<0C.若SKIPIF1<0表示實(shí)數(shù)集,則SKIPIF1<0D.若SKIPIF1<0表示正實(shí)數(shù)集,函數(shù)SKIPIF1<0,則2049屬于函數(shù)SKIPIF1<0的值域【答案】BD【解析】對(duì)于選項(xiàng)A:因?yàn)镾KIPIF1<0,根據(jù)所給定義可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的全部元素之和等于3872,故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B:SKIPIF1<0,故選項(xiàng)B正確;對(duì)于選項(xiàng)C:SKIPIF1<0,表示冪函數(shù)SKIPIF1<0的值域,可知冪函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,即SKIPIF1<0,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D:因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,可得SKIPIF1<0,故選項(xiàng)D正確.故選:BD.13.(2024·四川·模擬預(yù)測(cè))已知實(shí)數(shù)SKIPIF1<0滿(mǎn)足下列等式SKIPIF1<0,則SKIPIF1<0.【答案】1【解析】因?yàn)镾KIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0都為增函數(shù),所以SKIPIF1<0在SKIPIF1<0為單調(diào)遞增函數(shù),又知SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.14.(2024·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0為均不等于1且不相等的正實(shí)數(shù).若函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0.【答案】SKIPIF1<0【解析】因?yàn)楹瘮?shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.故答案為:SKIPIF1<0.15.(2024·北京房山·一模)若對(duì)任意SKIPIF1<0,函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0,則函數(shù)SKIPIF1<0的一個(gè)解析式是.【答案】SKIPIF1<0(答案不唯一)【解析】由題意,可取SKIPIF1<0,函數(shù)SKIPIF1<0是減函數(shù),滿(mǎn)足SKIPIF1<0時(shí),都有SKIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0滿(mǎn)足題意.故答案為:SKIPIF1<0.(答案不唯一)16.(2024·上海黃浦·二模)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的值,使得SKIPIF1<0為奇函數(shù);(2)若SKIPIF1<0,求滿(mǎn)足SKIPIF1<0的實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)由SKIPIF1<0為奇函數(shù),可知SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對(duì)一切非零實(shí)數(shù)SKIPIF1<0恒成立,故SKIPIF1<0時(shí),SKIPIF1<0為奇函數(shù).(2)由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0解得:SKIPIF1<0,所以滿(mǎn)足SKIPIF1<0的實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.17.已知函數(shù)SKIPIF1<0,且SKIPIF1<0.(1)求a的值;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求m的取值范圍.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.(2)由(1)可知,SKIPIF1<0等價(jià)于SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,原不等式等價(jià)于SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0,解得SKIPIF1<0,故m的取值范圍為SKIPIF1<0.18.已知關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0.(1)求集合SKIPIF1<0;(2)若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最小值.【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解之得SKIPIF1<0,∵SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取得等號(hào),∴SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0在R上單調(diào)遞增可得SKIPIF1<0,故SKIPIF1<0.(2)∵SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,兩邊平方得,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,不妨令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,由二次函數(shù)的單調(diào)性可知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取得等號(hào),綜上,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取到最小值SKIPIF1<0.19.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)若方程SKIPIF1<0在SKIPIF1<0上有實(shí)數(shù)解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0(2)∵函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,方程SKIPIF1<0在SKIPIF1<0上有解,即SKIPIF1<0,∴SKIPIF1<0在區(qū)間SKIPIF1<0上有解,即SKIPIF1<0有解,由于SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<01.(2023年新課標(biāo)全國(guó)Ⅰ卷數(shù)學(xué)真題)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】函數(shù)SKIPIF1<0在R上單調(diào)遞增,而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則有函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D2.(2022年高考全國(guó)甲卷數(shù)學(xué)(文)真題)已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論