山東省青島市42中學(xué)2024-2025學(xué)年初三畢業(yè)班質(zhì)檢數(shù)學(xué)試題理試題含解析_第1頁
山東省青島市42中學(xué)2024-2025學(xué)年初三畢業(yè)班質(zhì)檢數(shù)學(xué)試題理試題含解析_第2頁
山東省青島市42中學(xué)2024-2025學(xué)年初三畢業(yè)班質(zhì)檢數(shù)學(xué)試題理試題含解析_第3頁
山東省青島市42中學(xué)2024-2025學(xué)年初三畢業(yè)班質(zhì)檢數(shù)學(xué)試題理試題含解析_第4頁
山東省青島市42中學(xué)2024-2025學(xué)年初三畢業(yè)班質(zhì)檢數(shù)學(xué)試題理試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省青島市42中學(xué)2024-2025學(xué)年初三畢業(yè)班質(zhì)檢數(shù)學(xué)試題理試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.設(shè)點和是反比例函數(shù)圖象上的兩個點,當(dāng)<<時,<,則一次函數(shù)的圖象不經(jīng)過的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形3.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個方程為“美好”方程,如果一個一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個相等的實數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于04.在體育課上,甲,乙兩名同學(xué)分別進行了5次跳遠測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差5.下列各式正確的是()A. B.C. D.6.對于非零的兩個實數(shù)、,規(guī)定,若,則的值為()A. B. C. D.7.一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標(biāo)可以為()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)8.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米9.6的相反數(shù)為A.-6 B.6 C. D.10.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<0二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.12.如圖是我市某連續(xù)7天的最高氣溫與最低氣溫的變化圖,根據(jù)圖中信息可知,這7天中最大的日溫差是℃.13.等腰梯形是__________對稱圖形.14.如圖,是由一些小立方塊所搭幾何體的三種視圖,若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個大正方體,至少還需要________個小立方塊.15.如圖,已知,D、E分別是邊BA、CA延長線上的點,且如果,,那么AE的長為______.16.從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是____.17.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要_____cm.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,在中,,用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當(dāng)為多少度時,AP平分.19.(5分)關(guān)于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)寫出一個m的值,并求出此時方程的根.20.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學(xué)依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.21.(10分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字1,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,1.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點M的坐標(biāo)(x,y).請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標(biāo);求點M(x,y)在函數(shù)y=﹣2x22.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.23.(12分)京沈高速鐵路赤峰至喀左段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.若乙隊單獨施工,需要多少天才能完成該項工程?若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?24.(14分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】∵點和是反比例函數(shù)圖象上的兩個點,當(dāng)<<1時,<,即y隨x增大而增大,∴根據(jù)反比例函數(shù)圖象與系數(shù)的關(guān)系:當(dāng)時函數(shù)圖象的每一支上,y隨x的增大而減?。划?dāng)時,函數(shù)圖象的每一支上,y隨x的增大而增大.故k<1.∴根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系:一次函數(shù)的圖象有四種情況:①當(dāng),時,函數(shù)的圖象經(jīng)過第一、二、三象限;②當(dāng),時,函數(shù)的圖象經(jīng)過第一、三、四象限;③當(dāng),時,函數(shù)的圖象經(jīng)過第一、二、四象限;④當(dāng),時,函數(shù)的圖象經(jīng)過第二、三、四象限.因此,一次函數(shù)的,,故它的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故選A.2、B【解析】

如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.3、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項C正確;選項A、B、D都錯誤;故選C.4、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越??;反之,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠成績的方差.故選D.5、A【解析】∵,則B錯;,則C;,則D錯,故選A.6、D【解析】試題分析:因為規(guī)定,所以,所以x=,經(jīng)檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.7、C【解析】【分析】根據(jù)函數(shù)圖象的性質(zhì)判斷系數(shù)k>0,則該函數(shù)圖象經(jīng)過第一、三象限,由函數(shù)圖象與y軸交于負半軸,則該函數(shù)圖象經(jīng)過第一、三、四象限,由此得到結(jié)論.【詳解】∵一次函數(shù)y=kx﹣1的圖象的y的值隨x值的增大而增大,∴k>0,A、把點(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合題意;B、把點(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合題意;C、把點(2,2)代入y=kx﹣1得到:k=>0,符合題意;D、把點(5,﹣1)代入y=kx﹣1得到:k=0,不符合題意,故選C.【點睛】考查了一次函數(shù)圖象上點的坐標(biāo)特征,一次函數(shù)的性質(zhì),根據(jù)題意求得k>0是解題的關(guān)鍵.8、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應(yīng)用-仰角俯角問題.9、A【解析】

根據(jù)相反數(shù)的定義進行求解.【詳解】1的相反數(shù)為:﹣1.故選A.本題主要考查相反數(shù)的定義,熟練掌握相反數(shù)的定義是解答的關(guān)鍵,絕對值相等,符號相反的兩個數(shù)互為相反數(shù).10、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、200【解析】

先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進而可得出結(jié)論.【詳解】解:∵⊙O的直徑為1000mm,

∴OA=OA=500mm.

∵OD⊥AB,AB=800mm,

∴AC=400mm,

∴OC===300mm,∴CD=OD-OC=500-300=200(mm).

答:水的最大深度為200mm.故答案為:200本題考查的是垂徑定理的應(yīng)用,根據(jù)勾股定理求出OC的長是解答此題的關(guān)鍵.12、11.【解析】試題解析:∵由折線統(tǒng)計圖可知,周一的日溫差=8℃+1℃=9℃;周二的日溫差=7℃+1℃=8℃;周三的日溫差=8℃+1℃=9℃;周四的日溫差=9℃;周五的日溫差=13℃﹣5℃=8℃;周六的日溫差=15℃﹣71℃=8℃;周日的日溫差=16℃﹣5℃=11℃,∴這7天中最大的日溫差是11℃.考點:1.有理數(shù)大小比較;2.有理數(shù)的減法.13、軸【解析】

根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結(jié)合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸本題考查了關(guān)于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.14、54【解析】試題解析:由主視圖可知,搭成的幾何體有三層,且有4列;由左視圖可知,搭成的幾何體共有3行;第一層有7個正方體,第二層有2個正方體,第三層有1個正方體,共有10個正方體,∵搭在這個幾何體的基礎(chǔ)上添加相同大小的小正方體,以搭成一個大正方體,∴搭成的大正方體的共有4×4×4=64個小正方體,∴至少還需要64-10=54個小正方體.【點睛】先由主視圖、左視圖、俯視圖求出原來的幾何體共有10個正方體,再根據(jù)搭成的大正方體的共有4×4×4=64個小正方體,即可得出答案.本題考查了學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查,關(guān)鍵是求出搭成的大正方體共有多少個小正方體.15、【解析】

由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.16、【解析】分析:由題意可知,從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果,其中是有理數(shù)的有3種,由此即可得到所求概率了.詳解:∵從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果,其中有理數(shù)有0,3.14,6共3個,∴抽到有理數(shù)的概率是:.故答案為.點睛:知道“從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果”并能識別其中“0,3.14,6”是有理數(shù)是解答本題的關(guān)鍵.17、1【解析】

要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)30°.【解析】

(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當(dāng)時,AP平分.本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.19、(1)見解析;(2)x1=1,x2=2【解析】

(1)根據(jù)根的判別式列出關(guān)于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【詳解】解:(1)根據(jù)題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個不相等的實數(shù)根;(2)當(dāng)m=-2時,由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.本題主要考查根的判別式與韋達定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>1時,方程有兩個不相等的兩個實數(shù)根;②當(dāng)△=1時,方程有兩個相等的兩個實數(shù)根;③當(dāng)△<1時,方程無實數(shù)根.20、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為21、(1)樹狀圖見解析,則點M所有可能的坐標(biāo)為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結(jié)果;(2)由點M(x,y)在函數(shù)y=﹣2x試題解析:(1)樹狀圖如下圖:則點M所有可能的坐標(biāo)為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵點M(x,y)在函數(shù)y=﹣2x∴點M(x,y)在函數(shù)y=﹣2x的圖象上的概率為:2考點:列表法或樹狀圖法求概率.22、(1)詳見解析;(2)【解析】

(1)連接OD,根據(jù)等邊對等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.23、(1)乙隊單獨施工需要1天完成;(2)乙隊至少施工l8天才能完成該項工程.【解析】

(1)先求得甲隊單獨施工完

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論