山西省陽泉市盂縣重點名校2025年中考絕密沖刺卷:數(shù)學試題試卷含解析_第1頁
山西省陽泉市盂縣重點名校2025年中考絕密沖刺卷:數(shù)學試題試卷含解析_第2頁
山西省陽泉市盂縣重點名校2025年中考絕密沖刺卷:數(shù)學試題試卷含解析_第3頁
山西省陽泉市盂縣重點名校2025年中考絕密沖刺卷:數(shù)學試題試卷含解析_第4頁
山西省陽泉市盂縣重點名校2025年中考絕密沖刺卷:數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山西省陽泉市盂縣重點名校2025年中考絕密沖刺卷:數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達到了C.當室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內(nèi)2.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2893.某種商品的進價為800元,出售時標價為1200元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折4.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結(jié)論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE5.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°6.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.57.已知一個多邊形的每一個外角都相等,一個內(nèi)角與一個外角的度數(shù)之比是3:1,這個多邊形的邊數(shù)是A.8 B.9 C.10 D.128.已知A樣本的數(shù)據(jù)如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數(shù) B.標準差 C.中位數(shù) D.眾數(shù)9.某公司第4月份投入1000萬元科研經(jīng)費,計劃6月份投入科研經(jīng)費比4月多500萬元.設該公司第5、6個月投放科研經(jīng)費的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50010.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-211.已知為單位向量,=,那么下列結(jié)論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反12.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:16a3﹣4a=_____.14.如圖,在邊長為1正方形ABCD中,點P是邊AD上的動點,將△PAB沿直線BP翻折,點A的對應點為點Q,連接BQ、DQ.則當BQ+DQ的值最小時,tan∠ABP=_____.15.若使代數(shù)式有意義,則x的取值范圍是_____.16.若a是方程的根,則=_____.17.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.18.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結(jié)論的是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某中學開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②所示的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.

請你根據(jù)圖中信息解答下列問題:

(1)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角度數(shù)是_____°;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生1200人,試估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).20.(6分)已知:如圖所示,在中,,,求和的度數(shù).21.(6分)如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關(guān)于y軸對稱的△A1B1C1;以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.22.(8分)實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)作∠BAC的平分線,交BC于點O.以O為圓心,OC為半徑作圓.綜合運用:在你所作的圖中,AB與⊙O的位置關(guān)系是_____.(直接寫出答案)若AC=5,BC=12,求⊙O的半徑.23.(8分)如圖,在Rt中,,分別以點A、C為圓心,大于長為半徑畫弧,兩弧相交于點M、N,連結(jié)MN,與AC、BC分別交于點D、E,連結(jié)AE.(1)求;(直接寫出結(jié)果)(2)當AB=3,AC=5時,求的周長.24.(10分)(1)如圖1,半徑為2的圓O內(nèi)有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認為葛叔叔的想法能實現(xiàn)嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②25.(10分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.26.(12分)計算:=_____.27.(12分)如圖,數(shù)軸上的點A、B、C、D、E表示連續(xù)的五個整數(shù),對應數(shù)分別為a、b、c、d、e.(1)若a+e=0,則代數(shù)式b+c+d=;(2)若a是最小的正整數(shù),先化簡,再求值:a+1a-2(3)若a+b+c+d=2,數(shù)軸上的點M表示的實數(shù)為m(m與a、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.本題考查反比例函數(shù)的應用、一次函數(shù)的應用等知識,解題的關(guān)鍵是讀懂圖象信息,屬于中考??碱}型.2、D【解析】

分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側(cè)時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應用,小心別漏解.3、B【解析】

設可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.本題考查的是一元一次不等式的應用,解此類題目時注意利潤和折數(shù),計算折數(shù)時注意要除以2.解答本題的關(guān)鍵是讀懂題意,求出打折之后的利潤,根據(jù)利潤率不低于5%,列不等式求解.4、C【解析】

根據(jù)相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.5、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.6、B【解析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例7、A【解析】試題分析:設這個多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設這個多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數(shù):360°÷45°=8,故選A.考點:多邊形內(nèi)角與外角.8、B【解析】試題分析:根據(jù)樣本A,B中數(shù)據(jù)之間的關(guān)系,結(jié)合眾數(shù),平均數(shù),中位數(shù)和標準差的定義即可得到結(jié)論:設樣本A中的數(shù)據(jù)為xi,則樣本B中的數(shù)據(jù)為yi=xi+2,則樣本數(shù)據(jù)B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.9、A【解析】

設該公司第5、6個月投放科研經(jīng)費的月平均增長率為x,5月份投放科研經(jīng)費為1000(1+x),6月份投放科研經(jīng)費為1000(1+x)(1+x),即可得答案.【詳解】設該公司第5、6個月投放科研經(jīng)費的月平均增長率為x,則6月份投放科研經(jīng)費1000(1+x)2=1000+500,故選A.考查一元二次方程的應用,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.10、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.11、C【解析】

由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.本題考查了向量的方向,是基礎題,較簡單.12、D【解析】

過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應角相等;三角函數(shù)的定義及三角函數(shù)值的求法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)本題考查了提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.14、﹣1【解析】

連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】如圖:連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.本題考查了翻折變換(折疊問題),正方形的性質(zhì),軸對稱﹣最短路線問題,正確的理解題意是解題的關(guān)鍵.15、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.本題考查了分式有意義的條件,解題的關(guān)鍵是熟練的掌握分式有意義的條件.16、1【解析】

利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,

∴3a2-a-2=0,

∴3a2-a=2,

∴==5-2×2=1.

故答案為:1.此題考查一元二次方程的解,解題關(guān)鍵在于掌握能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、2【解析】

解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.18、①②③【解析】

根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數(shù)有1個:①②③.故答案為①②③本題綜合性較強,考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計算,有一定的難度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)126;(2)作圖見解析(3)768【解析】試題分析:(1)根據(jù)扇形統(tǒng)計圖求出所占的百分比,然后乘以360°即可;(2)利用“查資料”人人數(shù)是40人,查資料”人占總?cè)藬?shù)40%,求出總?cè)藬?shù)100,再求出32人;(3)用部分估計整體.試題解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考點:統(tǒng)計圖20、,.【解析】

根據(jù)等腰三角形的性質(zhì)即可求出∠B,再根據(jù)三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知等邊對等角.21、(1)見解析;(2)圖見解析;.【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于y軸的對稱點A1、B1、C1的位置,然后順次連接即可.(2)連接A1O并延長至A2,使A2O=2A1O,連接B1O并延長至B2,使B2O=2B1O,連接C1O并延長至C2,使C2O=2C1O,然后順次連接即可,再根據(jù)相似三角形面積的比等于相似比的平方解答.【詳解】解:(1)△A1B1C1如圖所示.(2)△A2B2C2如圖所示.∵△A1B1C1放大為原來的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比為.∴S△A1B1C1:S△A2B2C2=()2=.22、(1)作圖見解析;(2)作圖見解析;綜合運用:(1)相切;(2)⊙O的半徑為.【解析】

綜合運用:(1)根據(jù)角平分線上的點到角兩邊的距離相等可得AB與⊙O的位置關(guān)系是相切;(2)首先根據(jù)勾股定理計算出AB的長,再設半徑為x,則OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【詳解】(1)①作∠BAC的平分線,交BC于點O;②以O為圓心,OC為半徑作圓.AB與⊙O的位置關(guān)系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,AB==13,∴DB=AB-AD=13-5=8,設半徑為x,則OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=.答:⊙O的半徑為.本題考查了1.作圖—復雜作圖;2.角平分線的性質(zhì);3.勾股定理;4.切線的判定.23、(1)∠ADE=90°;(2)△ABE的周長=1.【解析】試題分析:(1)是線段垂直平分線的做法,可得∠ADE=90°(2)根據(jù)勾股定理可求得BC=4,由垂直平分線的性質(zhì)可知AE=CE,所以△ABE的周長為AB+BE+AE=AB+BC=1試題解析:(1)∵由題意可知MN是線段AC的垂直平分線,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是線段AC的垂直平分線,∴AE=CE,∴△ABE的周長=AB+(AE+BE)=AB+BC=3+4=1.考點:1、尺規(guī)作圖;2、線段垂直平分線的性質(zhì);3、勾股定理;4、三角形的周長24、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【解析】

(1)當AB是過P點的直徑時,AB最長;當AB⊥OP時,AB最短,分別求出即可.(2)如圖在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點D在優(yōu)弧AEC上(點D不與A、C重合),當D與E重合時,S△ADC最大值=S△AEC,由S△ABC為定值,故此時四邊形ABCD的面積最大,再根據(jù)勾股定理和等邊三角形的性質(zhì)求出此時的面積與周長即可.【詳解】(1)(1)當AB是過P點的直徑時,AB最長=2×2=4;當AB⊥OP時,AB最短,AP=∴AB=2(2)如圖,在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,當D與E重合時,S△ADC最大故此時四邊形ABCD的面積最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周長為AB+BC+CD+AE=80+60+100+100=340(米)S△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論