版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西運城東康中學2025屆初三第一次中考模擬統(tǒng)一考試(數(shù)學試題文)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知,下列說法中,不正確的是()A. B.與方向相同C. D.2.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數(shù)法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣53.我國古代數(shù)學家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.4.關(guān)于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-45.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.6.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.47.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點 D.三條高的交點8.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣9.若,則x-y的正確結(jié)果是()A.-1 B.1 C.-5 D.510.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+211.數(shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,512.小明同學在學習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,BC=6,點A為平面上一動點,且∠BAC=60°,點O為△ABC的外心,分別以AB、AC為腰向形外作等腰直角三角形△ABD與△ACE,連接BE、CD交于點P,則OP的最小值是_____14.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動點,則△CQR的周長的最小值為_________.15.某籃球架的側(cè)面示意圖如圖所示,現(xiàn)測得如下數(shù)據(jù):底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側(cè),與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈).16.大自然是美的設(shè)計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么PB的長度為__________cm.17.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯(lián)結(jié)DC.如果AD=2,BD=6,那么△ADC的周長為.18.請寫出一個比2大且比4小的無理數(shù):________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是;(2)如圖2,將△DHE繞點D順時針旋轉(zhuǎn),當點E、H、C在一條直線上時,求證:AE+EH=CH.20.(6分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)21.(6分)如圖:求作一點P,使,并且使點P到的兩邊的距離相等.22.(8分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.23.(8分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.24.(10分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數(shù);②若⊙O的半徑為2,求線段EF的長.25.(10分)某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.求甲、乙兩種商品的每件進價;該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?26.(12分)某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只27.(12分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數(shù).()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應(yīng)用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.2、B【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、C【解析】
根據(jù)題意畫出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.4、C【解析】
對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式5、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.6、D【解析】
先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.7、B【解析】
利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內(nèi)角的平分線的交點,點是的內(nèi)心,故選B.本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關(guān)鍵是判斷出.8、D【解析】
根據(jù)合并同類項、同底數(shù)冪的除法法則、分數(shù)指數(shù)運算法則、冪的乘方法則進行計算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯誤;B:x8÷x2=x8-2=x6,故B錯誤;C:=,故C錯誤;D:(-a-2)3=-a-6=-,故D正確.故選D.本題考查了合并同類項、同底數(shù)冪的除法法則、分數(shù)指數(shù)運算法則、冪的乘方法則.其中指數(shù)為分數(shù)的情況在初中階段很少出現(xiàn).9、A【解析】由題意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故選:A.10、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.11、D【解析】
根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.12、A【解析】
過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上),故選A.本題主要考查了基本作圖,關(guān)鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:如圖,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴點P在以BC為直徑的圓上,∵外心為O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以O(shè)P的最小值是.故答案為.考點:1.三角形的外接圓與外心;2.全等三角形的判定與性質(zhì).14、【解析】
作C關(guān)于AB的對稱點G,關(guān)于AD的對稱點F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對稱點G,關(guān)于AD的對稱點F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.本題考查了軸對稱問題,關(guān)鍵是根據(jù)軸對稱的性質(zhì)和兩點之間線段最短解答.15、1.1.【解析】
過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據(jù)已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.16、(15﹣5)【解析】
先利用黃金分割的定義計算出AP,然后計算AB-AP即得到PB的長.【詳解】∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案為(15﹣5).本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中AC=AB.17、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質(zhì);2.等腰三角形的判定與性質(zhì).18、(或)【解析】
利用完全平方數(shù)和算術(shù)平方根對無理數(shù)的大小進行估算,然后找出無理數(shù)即可【詳解】設(shè)無理數(shù)為,,所以x的取值在4~16之間都可,故可填本題考查估算無理數(shù)的大小,能夠判斷出中間數(shù)的取值范圍是解題關(guān)鍵三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據(jù)全等三角形的性質(zhì)得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結(jié)論;
(2)如圖2,根據(jù)菱形的性質(zhì)得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質(zhì)得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點睛:考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.20、小時【解析】
過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時間大約為:50÷40=(小時).考點:解直角三角形的應(yīng)用-方向角問題21、見解析【解析】
利用角平分線的作法以及線段垂直平分線的作法分別得出進而求出其交點即可.【詳解】如圖所示:P點即為所求.本題主要考查了復雜作圖,熟練掌握角平分線以及線段垂直平分線的作法是解題的關(guān)鍵.22、(1)證明見解析;(2)12【解析】
(1)由平行四邊形的性質(zhì)和角平分線得出∠BAF=∠BFA,即可得出AB=BF;(2)由題意可證△ABF為等邊三角形,點E是AF的中點.可求EF、BF的值,即可得解.【詳解】解:(1)證明:∵四邊形ABCD為平行四邊形,∴AB=CD,∠FAD=∠AFB又∵AF平分∠BAD,∴∠FAD=∠FAB∴∠AFB=∠FAB∴AB=BF∴BF=CD(2)解:由題意可證△ABF為等邊三角形,點E是AF的中點在Rt△BEF中,∠BFA=60°,BE=,可求EF=2,BF=4∴平行四邊形ABCD的周長為1223、(Ⅰ),PA=4;(Ⅱ),【解析】
(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2此題主要考查圓的綜合應(yīng)用24、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據(jù)直線與⊙O相切的性質(zhì),得OC⊥CD.又因為AD⊥CD,根據(jù)同一平面內(nèi),垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據(jù)等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據(jù)角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據(jù)兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內(nèi)角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根據(jù)垂徑定理可得FG=CG,因為OC=,∠OCE=45°.等腰直角三角形的斜邊是腰長的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,則EF=GE-FG=-2.【試題解析】(1)∵直線與⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于點G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法點睛】本題目是一道圓的綜合題目,涉及到圓的切線的性質(zhì),平行線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特許經(jīng)營合同:快餐連鎖品牌擴展協(xié)議
- 2025年標識牌原材料供應(yīng)與質(zhì)量保障合同3篇
- 2024年田土承包經(jīng)營權(quán)投資合作合同3篇
- 2024某局礦產(chǎn)資源開發(fā)合同
- 美發(fā)知識培訓課件
- 2024橋涵工程人工承包協(xié)議一
- 《模具知識培訓》課件
- 2024年高速公路護坡工程專項勞務(wù)合作合同版B版
- 中國戲曲學院《新媒體策劃》2023-2024學年第一學期期末試卷
- 2024年設(shè)備安裝與維修合同6篇
- 年度得到 · 沈祖蕓全球教育報告(2024-2025)
- 2025河北機場管理集團限公司招聘39人高頻重點提升(共500題)附帶答案詳解
- (2024-2025)新人教版八年級上冊語文期末測試卷及答案
- 35KV變電站地質(zhì)勘察與施工方案
- 2025年中國社會科學院外國文學研究所專業(yè)技術(shù)人員招聘3人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 運輸公司安全隱患大排查整治行動方案
- 湖北省十堰市2023-2024學年高二上學期期末調(diào)研考試 物理 含答案
- 傳染病和突發(fā)公共衛(wèi)生事件報告和處置培訓課件
- 道具設(shè)計安裝合同模板
- 2024至2030年中國白內(nèi)障手術(shù)耗材行業(yè)投資前景及策略咨詢研究報告
- 體育單杠課件教學課件
評論
0/150
提交評論