版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶市第七十一中學(xué)2025年初三第五次模擬數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.到三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形()的交點(diǎn).A.三個(gè)內(nèi)角平分線 B.三邊垂直平分線C.三條中線 D.三條高2.若關(guān)于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥33.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解4.將拋物線y=x2﹣x+1先向左平移2個(gè)單位長度,再向上平移3個(gè)單位長度,則所得拋物線的表達(dá)式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+45.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°6.﹣22×3的結(jié)果是()A.﹣5 B.﹣12 C.﹣6 D.127.施工隊(duì)要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計(jì)劃多施工30米才能按時(shí)完成任務(wù).設(shè)原計(jì)劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=28.如圖,直線a∥b,直線分別交a,b于點(diǎn)A,C,∠BAC的平分線交直線b于點(diǎn)D,若∠1=50°,則∠2的度數(shù)是A.50° B.70° C.80° D.110°9.2019年4月份,某市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,3510.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個(gè)數(shù),那么該幾何體的主視圖是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,點(diǎn)是反比例函數(shù)圖像上的兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過點(diǎn)作軸于點(diǎn),交于點(diǎn),延長交軸于點(diǎn),已知,,則的值為__________.12.如圖,矩形ABCD中,AD=5,∠CAB=30°,點(diǎn)P是線段AC上的動(dòng)點(diǎn),點(diǎn)Q是線段CD上的動(dòng)點(diǎn),則AQ+QP的最小值是___________.13.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點(diǎn)B的直線折疊三角形,使點(diǎn)C落在AB邊的點(diǎn)E處,折痕為BD.則△AED的周長為____cm.14.如圖,圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為216°的扇形,則r的值為.15.如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.16.如圖,四邊形ABCD是菱形,∠DAB=50°,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于H,連接OH,則∠DHO=_____度.三、解答題(共8題,共72分)17.(8分)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).(1)求拋物線解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.18.(8分)如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.求證:∠C=90°;當(dāng)BC=3,sinA=時(shí),求AF的長.19.(8分)如圖,在中,,點(diǎn)在上運(yùn)動(dòng),點(diǎn)在上,始終保持與相等,的垂直平分線交于點(diǎn),交于,判斷與的位置關(guān)系,并說明理由;若,,,求線段的長.20.(8分)如圖,在中,,,點(diǎn)D是BC上任意一點(diǎn),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),得到線段AE,連結(jié)EC.依題意補(bǔ)全圖形;求的度數(shù);若,,將射線DA繞點(diǎn)D順時(shí)針旋轉(zhuǎn)交EC的延長線于點(diǎn)F,請(qǐng)寫出求AF長的思路.21.(8分)如圖1,在長方形ABCD中,,,點(diǎn)P從A出發(fā),沿的路線運(yùn)動(dòng),到D停止;點(diǎn)Q從D點(diǎn)出發(fā),沿路線運(yùn)動(dòng),到A點(diǎn)停止.若P、Q兩點(diǎn)同時(shí)出發(fā),速度分別為每秒、,a秒時(shí)P、Q兩點(diǎn)同時(shí)改變速度,分別變?yōu)槊棵搿?P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是的面積和運(yùn)動(dòng)時(shí)間(秒)的圖象.(1)求出a值;(2)設(shè)點(diǎn)P已行的路程為,點(diǎn)Q還剩的路程為,請(qǐng)分別求出改變速度后,和運(yùn)動(dòng)時(shí)間(秒)的關(guān)系式;(3)求P、Q兩點(diǎn)都在BC邊上,x為何值時(shí)P,Q兩點(diǎn)相距3cm?22.(10分)為了解某校九年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.學(xué)生立定跳遠(yuǎn)測(cè)試成績的頻數(shù)分布表分組頻數(shù)1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810請(qǐng)根據(jù)圖表中所提供的信息,完成下列問題:表中a=,b=,樣本成績的中位數(shù)落在范圍內(nèi);請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;該校九年級(jí)共有1000名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績?cè)?.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?23.(12分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號(hào)”高鐵A與“復(fù)興號(hào)”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時(shí)間比B車的行駛時(shí)間多40%,兩車的行駛時(shí)間分別為多少?24.為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動(dòng)登陸我市中心城區(qū).某公司擬在甲、乙兩個(gè)街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請(qǐng)回答下列問題:問題1:單價(jià)該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車各50輛,投放成本共計(jì)7500元,其中B型車的成本單價(jià)比A型車高10元,A、B兩型自行車的單價(jià)各是多少?問題2:投放方式該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有15萬人,試求a的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等解答.解:到三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形三邊垂直平分線的交點(diǎn).故選B.點(diǎn)評(píng):本題考查了線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.2、C【解析】
根據(jù)“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.考查了解不等式組,根據(jù)求不等式的無解,遵循“大大小小解不了”原則得出是解題關(guān)鍵.3、C【解析】
先把分式方程化為整式方程,求出x的值,代入最簡公分母進(jìn)行檢驗(yàn).【詳解】方程兩邊同時(shí)乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關(guān)鍵.4、A【解析】
先將拋物線解析式化為頂點(diǎn)式,左加右減的原則即可.【詳解】y=x當(dāng)向左平移2個(gè)單位長度,再向上平移3個(gè)單位長度,得y=x-故選A.本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點(diǎn)式進(jìn)行;5、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質(zhì),即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點(diǎn)睛:本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.6、B【解析】
先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.本題主要考查了有理數(shù)的混合運(yùn)算,熟練掌握法則是解答本題的關(guān)鍵.有理數(shù)的混合運(yùn)算,先乘方,再乘除,后加減,有括號(hào)的先算括號(hào)內(nèi)的.7、A【解析】分析:設(shè)原計(jì)劃每天施工x米,則實(shí)際每天施工(x+30)米,根據(jù):原計(jì)劃所用時(shí)間﹣實(shí)際所用時(shí)間=2,列出方程即可.詳解:設(shè)原計(jì)劃每天施工x米,則實(shí)際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點(diǎn)睛:本題考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.8、C【解析】
根據(jù)平行線的性質(zhì)可得∠BAD=∠1,再根據(jù)AD是∠BAC的平分線,進(jìn)而可得∠BAC的度數(shù),再根據(jù)補(bǔ)角定義可得答案.【詳解】因?yàn)閍∥b,所以∠1=∠BAD=50°,因?yàn)锳D是∠BAC的平分線,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.本題考查的知識(shí)點(diǎn)是平行線的性質(zhì),解題關(guān)鍵是掌握兩直線平行,內(nèi)錯(cuò)角相等.9、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.10、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關(guān)系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應(yīng)該為1,2,3,故選A.本題考查了三視圖的簡單性質(zhì),屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關(guān)系是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
過點(diǎn)B作BF⊥OC于點(diǎn)F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因?yàn)?,所以,,又因?yàn)锳D∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因?yàn)镾△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點(diǎn)B作BF⊥OC于點(diǎn)F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運(yùn)用相似三角形的判定定理和性質(zhì)定理.12、5【解析】
作點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)E,作EP⊥AC于P,交CD于點(diǎn)Q,此時(shí)QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解決問題.【詳解】解:作點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)E,作EP⊥AC于P,交CD于點(diǎn)Q.∵四邊形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此時(shí)QA+QP最短(垂線段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE?sin60°=10×=5.故答案為5.本題考查矩形的性質(zhì)、最短問題、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是利用對(duì)稱以及垂線段最短找到點(diǎn)P、Q的位置,屬于中考??碱}型.13、7【解析】
根據(jù)翻折變換的性質(zhì)可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個(gè)三角形點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.本題考查了翻折變換的性質(zhì),翻折前后對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.14、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點(diǎn)】圓錐的計(jì)算.15、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對(duì)應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據(jù)題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1此題考查了相似三角形的判定與性質(zhì),三角函數(shù)的定義.此題難度適中,解題的關(guān)鍵是準(zhǔn)確作出輔助線,注意轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用.16、1.【解析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點(diǎn):菱形的性質(zhì).三、解答題(共8題,共72分)17、(1)拋物線解析式為,頂點(diǎn)為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】
(1)已知了拋物線的對(duì)稱軸解析式,可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點(diǎn)坐標(biāo)代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點(diǎn)的橫坐標(biāo),用拋物線的解析式求出E點(diǎn)的縱坐標(biāo),那么E點(diǎn)縱坐標(biāo)的絕對(duì)值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進(jìn)而可得出S與x的函數(shù)關(guān)系式.(3)①將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點(diǎn)的坐標(biāo)和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應(yīng)該是等腰直角三角形,即E點(diǎn)的坐標(biāo)為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點(diǎn).【詳解】(1)由拋物線的對(duì)稱軸是,可設(shè)解析式為.把A、B兩點(diǎn)坐標(biāo)代入上式,得解之,得故拋物線解析式為,頂點(diǎn)為(2)∵點(diǎn)在拋物線上,位于第四象限,且坐標(biāo)適合,∴y<0,即-y>0,-y表示點(diǎn)E到OA的距離.∵OA是的對(duì)角線,∴.因?yàn)閽佄锞€與軸的兩個(gè)交點(diǎn)是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當(dāng)S=24時(shí),即.化簡,得解之,得故所求的點(diǎn)E有兩個(gè),分別為E1(3,-4),E2(4,-4).點(diǎn)E1(3,-4)滿足OE=AE,所以是菱形;點(diǎn)E2(4,-4)不滿足OE=AE,所以不是菱形.②當(dāng)OA⊥EF,且OA=EF時(shí),是正方形,此時(shí)點(diǎn)E的坐標(biāo)只能是(3,-3).而坐標(biāo)為(3,-3)的點(diǎn)不在拋物線上,故不存在這樣的點(diǎn)E,使為正方形.18、(1)見解析(2)【解析】
(1)連接OE,BE,因?yàn)镈E=EF,所以=,從而易證∠OEB=∠DBE,所以O(shè)E∥BC,從可證明BC⊥AC;(2)設(shè)⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點(diǎn)E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設(shè)⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴本題考查圓的綜合問題,涉及平行線的判定與性質(zhì),銳角三角函數(shù),解方程等知識(shí),綜合程度較高,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí).19、(1).理由見解析;(2).【解析】
(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到,利用,得到,于是得到結(jié)論;
(2)連接PE,設(shè)DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設(shè),由(1)得,,又,,∵,∴,∴,解得,即.本題考查了線段垂直平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,正確的作出輔助線解題的關(guān)鍵.20、(1)見解析;(2)90°;(3)解題思路見解析.【解析】
(1)將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,得到線段AE,連結(jié)EC.(2)先判定△ABD≌△ACE,即可得到,再根據(jù),即可得出;(3)連接DE,由于△ADE為等腰直角三角形,所以可求;由,,可求的度數(shù)和的度數(shù),從而可知DF的長;過點(diǎn)A作于點(diǎn)H,在Rt△ADH中,由,AD=1可求AH、DH的長;由DF、DH的長可求HF的長;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長.【詳解】解:如圖,線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),得到線段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ連接DE,由于為等腰直角三角形,所以可求;Ⅱ由,,可求的度數(shù)和的度數(shù),從而可知DF的長;Ⅲ過點(diǎn)A作于點(diǎn)H,在中,由,可求AH、DH的長;Ⅳ由DF、DH的長可求HF的長;Ⅴ在中,由AH和HF,利用勾股定理可求AF的長.故答案為(1)見解析;(2)90°;(3)解題思路見解析.本題主要考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì)的運(yùn)用,解題的關(guān)鍵是要注意對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.21、(1)6;(2);;(3)10或;【解析】
(1)根據(jù)圖象變化確定a秒時(shí),P點(diǎn)位置,利用面積求a;(2)P、Q兩點(diǎn)的函數(shù)關(guān)系式都是在運(yùn)動(dòng)6秒的基礎(chǔ)上得到的,因此注意在總時(shí)間內(nèi)減去6秒;(3)以(2)為基礎(chǔ)可知,兩個(gè)點(diǎn)相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),△APD的面積保持不變,則a秒時(shí),點(diǎn)P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點(diǎn)P變速,則點(diǎn)P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點(diǎn)路程總長為34cm,第6秒時(shí)已經(jīng)走12cm,故點(diǎn)Q還剩的路程為y2=34﹣12﹣;(3)當(dāng)P、Q兩點(diǎn)相遇前相距3cm時(shí),﹣(2x﹣6)=3,解得x=10,當(dāng)P、Q兩點(diǎn)相遇后相距3cm時(shí),(2x﹣6)﹣()=3,解得x=,∴當(dāng)x=10或時(shí),P、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新版農(nóng)民工勞動(dòng)合同書范本
- 2024年企業(yè)培訓(xùn)與人才發(fā)展合同:含員工培訓(xùn)和職業(yè)生涯規(guī)劃
- 2024格式合同樣本范文
- 2024汽車修理廠勞動(dòng)合同
- 2024弱電分包合同范本
- 2024年企業(yè)并購合同(金融服務(wù)行業(yè))
- 2024吉林省木材購銷合同
- 2024年大型客機(jī)零部件供應(yīng)合同
- 2024直系親屬房產(chǎn)過戶贈(zèng)與合同范本
- 初中語文孔乙己閱讀與答案
- 三年級(jí)上冊(cè)第二單元日記 25篇
- 辦公耗材采購 投標(biāo)方案(技術(shù)方案)
- 29、顧客意見簿(表029)
- 生活離不開規(guī)則 教案
- 石油和天然氣儲(chǔ)存行業(yè)物聯(lián)網(wǎng)與智能化技術(shù)
- 《跟上兔子》繪本四年級(jí)第1季Home-Is-Best課件
- 工程估價(jià)完整全套教學(xué)課件
- 全頻段無線通信技術(shù)
- HSS評(píng)分(膝關(guān)節(jié)評(píng)分)
- 海南省義務(wù)教育學(xué)校辦學(xué)基本標(biāo)準(zhǔn)(試行)
- 卟啉病(改)課件
評(píng)論
0/150
提交評(píng)論