版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第七章
多元函數(shù)微積分第二節(jié)
多元函數(shù)微分學一、多元函數(shù)的概念
在一元函數(shù)微積分中,討論的是只有一個自變量和一個因變量的函數(shù),而在自然現(xiàn)象和實際問題中所涉及的函數(shù),并非都是一元函數(shù),而往往依賴于兩個或者更多個自變量,先看幾個例子.
上面兩例的具體意義各不相同,但僅從數(shù)量關(guān)系來研究,它們卻有共同的性質(zhì),據(jù)此可抽象出多元函數(shù)的概念.
ax2+y2=a2yx
-3-232yx
對一般的二元函數(shù)可以證明:
OzyxM0CTM
(3)列表判定極值點ABC結(jié)論-82-2-42-2+
2.二元函數(shù)的最大值與最小值
與一元函數(shù)類似,對于有界閉區(qū)域上連續(xù)的二元函數(shù),一定能在該區(qū)域上取得最大值和最小值.對于二元可微函數(shù),如果該函數(shù)的最大值(最小值)在區(qū)域內(nèi)部取得,這個最大值(最小值)點必在函數(shù)的駐點之中,若函數(shù)的最大值(最小值)在區(qū)域的邊界上取得,那么它也一定是函數(shù)在邊界上的最大值(最小值).因此求函數(shù)的最大值和最小值的方法是:將函數(shù)在所討論區(qū)域內(nèi)的所有駐點處的函數(shù)值與函數(shù)在區(qū)域的邊界上的最大值和最小值想比較,其中最大者即為函數(shù)在閉區(qū)域上的最大值,最小值就是函數(shù)在閉區(qū)域上的最小值.x+y=4(0≤x≤4)yx4O
4
對于實際問題的最值問題,往往從問題本身能判定它們的最大值或最小值一定存在,且在定義區(qū)域內(nèi)部取得,這時,如果函數(shù)在定義域內(nèi)有唯
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年長沙客運實操考試
- 吉首大學《教師禮儀與修養(yǎng)》2021-2022學年第一學期期末試卷
- 吉林藝術(shù)學院《全媒體新聞寫作》2021-2022學年第一學期期末試卷
- 吉林藝術(shù)學院《合唱Ⅳ》2021-2022學年第一學期期末試卷
- 2024年供電增容協(xié)議書模板范本
- 吉林師范大學《羽毛球教學理論與實踐Ⅰ》2021-2022學年第一學期期末試卷
- 吉林師范大學《水彩畫技法研究》2021-2022學年第一學期期末試卷
- 吉林師范大學《美術(shù)概論》2021-2022學年第一學期期末試卷
- 吉林師范大學《環(huán)境影響評價技術(shù)導則》2021-2022學年第一學期期末試卷
- 陽光房壓型鋁合金板施工和保溫方案
- 監(jiān)理工程合理化建議
- (新版)征信知識競賽基礎(chǔ)題庫(500題)
- 倉儲物流部組織架構(gòu)及崗位設(shè)置
- 人教版五年級數(shù)學上冊課件練習十二
- 道德講堂PPT幻燈
- 半月板損傷PPT精選課件
- 【課件】禮儀與教化 課件-高中美術(shù)湘美版(2019)美術(shù)鑒賞
- 臨床教學能力師資培訓考試測試題
- 家庭居室裝飾裝修工程保修單
- 小學生漢語拼音田字格練習
- 消防工程技術(shù)標書(暗標)
評論
0/150
提交評論