版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第=page11頁(yè),共=sectionpages11頁(yè)2024-2025學(xué)年廣西南寧三中高三(上)適應(yīng)性數(shù)學(xué)試卷(9月份)一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z=i(1?i),則|z|=(
)A.2 B.2 C.5 D.2.若命題“?x∈R,x2+2x+3>m”是假命題,則實(shí)數(shù)m的取值范圍是(
)A.(?∞,2) B.[2,+∞) C.(?∞,2] D.(2,+∞)3.已知向量a,b滿足|a|=2,|a?2bA.1 B.22 C.34.以下命題為假命題的是(
)A.若樣本數(shù)據(jù)x1,x2,x3,x4,x5,x6的方差為2,則數(shù)據(jù)2x1?1,2x2?1,2x3?1,2x4?1,2x5?1,2x6?1的方差為8
B.一組數(shù)據(jù)8,9,10,11,5.動(dòng)點(diǎn)M在曲線x2+y2=1上移動(dòng),點(diǎn)M和定點(diǎn)B(3,0)連線的中點(diǎn)為P,則點(diǎn)A.x2+y2=14 B.6.設(shè)函數(shù)f(x)=2sinπ6x+2ax,g(x)=a(x?2)2+8a,曲線y=f(x)與A.?1 B.0 C.23 D.7.用平行于底面的平面截正四棱錐,截得幾何體為正四棱臺(tái).已知正四棱臺(tái)的上、下底面邊長(zhǎng)分別為1和2,側(cè)棱與底面所成的角為π4,則該四棱臺(tái)的體積是(
)A.76 B.726 C.8.已知a,b∈R,f(x)=ex?ax+b,若f(x)≥1恒成立,則b?aaA.[0,+∞) B.[1,+∞) C.[?2,+∞) D.[?1,+∞)二、多選題:本題共3小題,共18分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。9.對(duì)于函數(shù)f(x)=sin(12A.f(x)的最小正周期為π B.f(x)關(guān)于直線x=4π3對(duì)稱
C.f(x)在區(qū)間[4π3,8π10.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,C上一點(diǎn)P到F和到y(tǒng)軸的距離分別為12和10,且點(diǎn)P位于第一象限,以線段PF為直徑的圓記為Ω,則下列說(shuō)法正確的是(
)A.p=4
B.C的準(zhǔn)線方程為y=?2
C.圓Ω的標(biāo)準(zhǔn)方程為(x?6)2+(y?25)2=36
D.若過(guò)點(diǎn)(0,25),且與直線OP(O為坐標(biāo)原點(diǎn)11.已知函數(shù)f(x)=esinx?cosx+eA.f(x)的圖像是中心對(duì)稱圖形 B.f(x)的圖像是軸對(duì)稱圖形
C.f(x)是周期函數(shù) D.f(x)存在最大值與最小值三、填空題:本題共3小題,每小題5分,共15分。12.記Sn為等差數(shù)列{an}的前n項(xiàng)和,若a2+a513.已知tanα,tanβ是方程x2?3x?3=0的兩個(gè)實(shí)數(shù)根,tan(2α+2β)=14.某盒中有12個(gè)大小相同的球,分別標(biāo)號(hào)為1,2,?,12,從盒中任取3個(gè)球,記ξ為取出的3個(gè)球的標(biāo)號(hào)之和被3除的余數(shù),則隨機(jī)變量ξ=2的概率是______.四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。15.(本小題13分)
記△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知c=2b,cosB+2cosC=0.
(1)求cosA;
(2)若D是邊AB上一點(diǎn),AD=12DB,且CD=16.(本小題15分)
在平行四邊形ABCD中,∠D=60°,CD=1,AC=3.將△ABC沿AC翻折到△APC的位置,使得PD=5.
(1)證明;CD⊥平面APC;
(2)在線段AD上是否存在點(diǎn)M,使得二面角M?PC?A的余弦值為23917.(本小題15分)
已知函數(shù)f(x)=x+2a2x+alnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)x∈[e,+∞)時(shí),曲線y=f(x)在x18.(本小題17分)
為防范火災(zāi),對(duì)某倉(cāng)庫(kù)的滅火系統(tǒng)的3套噴淋裝置進(jìn)行檢查,發(fā)現(xiàn)各套裝置能正常工作的概率為34,且每套噴淋裝置能否正常工作是相互獨(dú)立的若有超過(guò)一半的噴淋裝置正常工作,則該倉(cāng)庫(kù)的滅火系統(tǒng)能正常工作,否則就需要維修.
(1)求該倉(cāng)庫(kù)滅火裝置正常工作的個(gè)數(shù)的均值與方差;
(2)系統(tǒng)需要維修的概率;
(3)為提高滅火系統(tǒng)正常工作的概率,在倉(cāng)庫(kù)內(nèi)增加兩套功能完全一樣的其他品牌的噴淋裝置,每套新噴淋裝置正常工作的概率為p(0<p<1),且新增噴淋裝置后有超過(guò)一半的系統(tǒng)能正常工作,則滅火系統(tǒng)可以正常工作.問(wèn):p滿足什么條件時(shí)可以提高整個(gè)滅火系統(tǒng)的正常工作概率?19.(本小題17分)
已知雙曲線E:x2a2?y2b2=1(a>0,b>0)的實(shí)軸長(zhǎng)為2,頂點(diǎn)到漸近線的距離為33.
(1)求雙曲線E的標(biāo)準(zhǔn)方程;
(2)若直線l與E的右支及漸近線的交點(diǎn)自上而下依次為C、A、B、D,證明:|AC|=|BD|;
(3)求二元二次方程x2?3y2=1的正整數(shù)解Qn(xn,yn)(xn,yn,n∈N?),可先找到初始解(參考答案1.B
2.B
3.D
4.D
5.B
6.C
7.B
8.D
9.BC
10.ACD
11.BCD
12.63
13.24714.185515.解:(1)由cosB+2cosC=0,
由余弦定理可得:a2+c2?b22ac+2?a2+b2?c22ab=0,
將c=2b代入得,a2+4b2?b22a?2b+2?a2+b2?4b22ab=0,
化簡(jiǎn)得5a2=9b2,即a=35516.(1)證明:翻折前,在△ACD中,∠D=60°,AC=3,CD=1,
由正弦定理得,ACsin∠ADC=CDsin∠CAD,
所以3sin60°=1sin∠CAD,即sin∠CAD=12,
又AC>CD,所以∠CAD=30°,
所以∠ACD=90°,即CD⊥AC,
因?yàn)镻D=5,PC=2,CD=1,所以PC2+CD2=PD2,即CD⊥PC,
又PC∩AC=C,AC、PC?平面APC,
所以CD⊥平面APC.
(2)解:由(1)知CD⊥平面APC,
因?yàn)镃D?平面ADC,所以平面ADC⊥平面APC,
在平行四邊形ABCD中,BA⊥AC,即PA⊥AC,
又平面ADC∩平面APC=AC,PA?平面APC,
所以PA⊥平面ADC,
以點(diǎn)C為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則C(0,0,0),D(1,0,0),P(0,3,1),A(0,3,0),
所以CP=(0,3,1),AD=(1,?3,0),CA=(0,3,0),
設(shè)AM=λAD=λ(1,?3,0)=(λ,?3λ,0),其中0≤λ≤1,
則CM=CA+AM=(0,3,0)+(λ,?3λ,0)=(λ,17.解:(Ⅰ)當(dāng)a=1時(shí),f(x)=x+2x+lnx,x>0,
所以f′(x)=1?2x2+1x,
所以f(1)=3,f′(1)=0,
所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=3;
(Ⅱ)因?yàn)楹瘮?shù)f(x)=x+2a2x+alnx(a∈R),
當(dāng)a≥0時(shí),由x∈[e,+∞)有f(x)>0,故曲線y=f(x)在x軸的上方,
當(dāng)a<0時(shí),f′(x)=1?2a2x2+ax=(x?a)(x+2a)x2,
由f′(x)=0可得x=?2a或x=a
(舍去),
所以當(dāng)x∈(0,?2a)時(shí),f′(x)<0,f(x)單調(diào)遞減,當(dāng)x∈(?2a,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)?2a≤e,即?e2≤a<0時(shí),所以f(x)在[e,+∞)上單調(diào)遞增,
則f(x)≥f(e)=e+2a2e+a=2e(a+e4)2+78e>0,即曲線18.解:記X為系統(tǒng)中可以正常工作的噴淋裝置的個(gè)數(shù).
(1)因?yàn)楦魈籽b置能正常工作的概率為34,且每套噴淋裝置能否正常工作是相互獨(dú)立,
所以X~B(3,34),
所以該倉(cāng)庫(kù)滅火裝置正常工作的個(gè)數(shù)的均值為E(X)=3×34=94,
方差D(X)=3×34×(1?34)=916;
(2)記事件A為“該倉(cāng)庫(kù)滅火系統(tǒng)需要維修”,
則P(A)=P(X=0)+P(X=1)=C30(1?34)3+C31(34)1(1?34)2=164+964=532.
所以系統(tǒng)需要維修的概率為532.
(3)記事件19.解:(1)由題意aba2+b2=332a=2c2=a2+b2,解得a2=1b2=12,
所以雙曲線E的標(biāo)準(zhǔn)方程為x2?y212=1;
(2)證明:由題意直線l
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年深圳職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 中學(xué)生每日一勵(lì)志名言
- 水平二跨越式跳高教學(xué)設(shè)計(jì)
- 癲癇持續(xù)狀態(tài)的處理幻燈片資料
- 卡通演唱會(huì)動(dòng)態(tài)背景圖片知識(shí)講解
- 2024年浙江安防職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 二零二五年度苯板防火安全材料買賣合同4篇
- 2024年河南護(hù)理職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 2024年江西電力職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫(kù)含答案解析
- 二零二五年度企業(yè)出納責(zé)任風(fēng)險(xiǎn)分擔(dān)協(xié)議書2篇
- 化妝培訓(xùn)課件教學(xué)課件
- 腰椎間盤突出癥課件(共100張課件)
- 學(xué)校食堂菜譜及定價(jià)方案
- 大型寺院建設(shè)規(guī)劃方案
- 人教版九年級(jí)英語(yǔ)全冊(cè)用英語(yǔ)講好中國(guó)故事
- 2024年人工智能(AI)訓(xùn)練師職業(yè)技能鑒定考試題庫(kù)(濃縮500題)
- 2024版中國(guó)臺(tái)球行業(yè)市場(chǎng)規(guī)模及投資策略研究報(bào)告(智研咨詢)
- 2024年國(guó)家公安部直屬事業(yè)單位招錄人民警察及工作人員696人筆試(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 初中必背古詩(shī)文138首
- 上海生活垃圾分類現(xiàn)狀調(diào)查報(bào)告
- 小升初中簡(jiǎn)歷模板
評(píng)論
0/150
提交評(píng)論