




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第3講分類討論思想——深究細查,各個擊破分類討論的原則分類討論的常見類型1.不重不漏;2.標準要統(tǒng)一,層次要分明;3.能不分類的要避免盲目分類,杜絕無原則的討論1.由數(shù)學概念而引起的分類討論;2.由數(shù)學運算要求而引起的分類討論;3.由性質、定理、公式的限制而引起的分類討論;4.由圖形的不確定性而引起的分類討論;5.由參數(shù)的變化而引起的分類討論分類討論是一種重要的數(shù)學思想方法,當問題的對象不能進行統(tǒng)一研究時,就需要對研究的對象按某個標準進行分類,然后對每一類分別研究,給出每一類的結論,最終綜合各類結果得到整個問題的解答.實質上分類討論就是“化整為零,各個擊破,再集零為整”的數(shù)學策略例題講解應用1由概念、運算、性質引起的分類討論例1(1)已知等比數(shù)列{an}的公比為q(q≠1),若Tn=a1a2a3·…·an(n∈N*),則“數(shù)列{Tn}為遞增數(shù)列”是“a1>0且q>1”的(
)A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件所以數(shù)列{Tn}為遞增數(shù)列時有a1≥1且q>1.所以“數(shù)列{Tn}為遞增數(shù)列”是“a1>0且q>1”的充分不必要條件.故選B.(2)寫出經(jīng)過拋物線y2=8x的焦點且和圓x2+(y-1)2=4相切的一條直線的方程_________.【解析】由題知,拋物線y2=8x的焦點為(2,0),圓x2+(y-1)2=4的圓心為(0,1),半徑為2.記過點(2,0)的直線為l,當l斜率不存在時,由圖可知,l與圓x2+(y-1)2=4相切,此時l的方程為x=2;【對點訓練】1.把形如45132的數(shù)稱為“波浪數(shù)”,即十位數(shù)字,千位數(shù)字均比它們各自相鄰的數(shù)字大,由1,2,3,4,5構成的無重復數(shù)字的五位“波浪數(shù)”的個數(shù)為(
)A.13 B.16C.20 D.252.已知函數(shù)f(x)=(m2-m-1)xm2-2m-2是冪函數(shù),且為偶函數(shù),則實數(shù)m=________.應用2由參數(shù)變化引起的分類討論例2(1)已知關于x的不等式kx2-6kx+k+8≥0對任意x∈R恒成立,則實數(shù)k的取值范圍是(
)A.0≤k≤1 B.0<k≤1C.k<0或k>1 D.k≤0或k≥1【對點訓練】1.已知在數(shù)列{an}中,a1=2,an+1+(-1)nan=1,n∈N*,則數(shù)列{an}的前2024項和為________.解析:
因為an+1+(-1)nan=1,所以an+2+(-1)n+1an+1=1.當n為偶數(shù)時,則an+1+an=1,an+2-an+1=1,所以an+2+an=2;當n為奇數(shù)時,則an+1-an=1,an+2+an+1=1,所以an+2+an=0.設數(shù)列{an}的前n項和為Sn,則S2024=a1+a2+…+a2024=[(a1+a3)+…+(a2021+a2023)]+[(a2+a4)+…+(a2022+a2024)]=0×506+2×506=1012.2.若函數(shù)f(x)=lnx-ax2+(a-2)x(其中x∈(1,+∞))存在最小值,則實數(shù)a的取值范圍為___________.應用3由圖形位置或形狀引起的分類討論例3(1)(2023·重慶渝中巴蜀中學模擬改編)已知拋物線C的焦點在直線x+2y+3=0上,則拋物線C的標準方程為(
)A.y2=12xB.y2=-12xC.x2=-6yD.y2=-12x或x2=-6y【對點訓練】1.已知半徑為5的球的兩個平行截面的周長分別為6π和8π,則兩平行截面間的距離是(
)A.1 B.2C.1或7 D.2或6其中△MA1B2,△NA1B2滿足要求,△A2A1B2三個頂點均為橢圓頂點,不滿足題意,同理,當A2B2,A2B1,A1B1為等腰三角形的腰時,也可以各作出2個滿足要求的等腰三角形,共有8個;如圖4,以B1為圓心,B1B2為半徑作圓,此時圓與橢圓相交于點B2,U,V,連接UB1,UB2,VB1,VB2,此時△UB1B2,△VB1B2為等腰三角形,滿足題意,共有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 賠償責任劃分協(xié)議書
- 終止合作補償協(xié)議書
- 租車換車協(xié)議書模板
- 架線用地協(xié)議書范本
- 離異小孩探視協(xié)議書
- 贈與款項協(xié)議書范本
- 租賃房屋轉讓協(xié)議書
- 績效工資考核協(xié)議書
- 雙方賠款協(xié)議書手寫
- 林地農莊轉讓協(xié)議書
- 醫(yī)療物聯(lián)網(wǎng)行業(yè)市場調研分析報告
- 《保密法》培訓課件
- 【青島海爾公司基于杜邦分析的盈利能力淺析(14000字論文)】
- DB11T 1424-2017 信息化項目軟件運維費用測算規(guī)范
- 膾炙人口的歌-小城故事 課件 2024-2025學年粵教花城版(簡譜)(2024)初中音樂七年級上冊
- 廣告設計師三級理論知識鑒定要素細目表
- 2024年二手設備買賣合同參考樣本(二篇)
- 抗旱報告申請書
- 粵教版四年級勞動與技術 第二單元 小泥巴變變變 活動2 泥塑杯子 教案
- 2024-2030年中國駱駝奶制造市場銷售格局與發(fā)展趨勢前景分析研究報告
- 2024年實驗室保密規(guī)定
評論
0/150
提交評論