2024年北京順義九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題【含答案】_第1頁
2024年北京順義九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題【含答案】_第2頁
2024年北京順義九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題【含答案】_第3頁
2024年北京順義九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題【含答案】_第4頁
2024年北京順義九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題【含答案】_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共7頁2024年北京順義九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)菱形具有平行四邊形不一定具有的特征是()A.對角線互相垂直 B.對角相等 C.對角線互相平分 D.對邊相等2、(4分)如圖,AB∥CD,BP和CP分別平分∠ABC和∠DCB,AD過點P,且與AB垂直.若AD=8,則點P到BC的距離是()A.8 B.6 C.4 D.23、(4分)某地區(qū)連續(xù)10天的最高氣溫統(tǒng)計如下表,則該地區(qū)這10天最高氣溫的中位數(shù)是()最高氣溫()1819202122天數(shù)12232A. B. C. D.4、(4分)用配方法解一元二次方程,下列變形正確的是()A. B.C. D.5、(4分)已知正比例函數(shù),且隨的增大而減小,則的取值范圍是()A. B. C. D.6、(4分)下列調(diào)查最適合用查閱資料的方法收集數(shù)據(jù)的是()A.班級推選班長 B.本校學(xué)生的到時間C.2014世界杯中,誰的進球最多 D.本班同學(xué)最喜愛的明星7、(4分)下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.8、(4分)已知直線y=kx+b經(jīng)過一、二、三象限,則直線y=bx-k-2的圖象只能是()A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)實數(shù)在數(shù)軸上的對應(yīng)點的位置如圖所示,則__________.10、(4分)如圖,在邊長為2cm的正方形ABCD中,點Q為BC邊的中點,點P為對角線AC上一動點,連接PB、PQ,則△PBQ周長的最小值為cm(結(jié)果不取近似值).11、(4分)在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的動點,則PE和PA的長度之和最小值為___________.12、(4分)若最簡二次根式與能合并成一項,則a=_____.13、(4分)如圖,將繞點逆時針旋轉(zhuǎn),得到,這時點恰好在同一直線上,則的度數(shù)為______.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在每個小正方形的邊長均為的方格紙中,有線段和線段,點、、、均在小正方形的頂點上.在方格紙中畫出以為對角線的正方形,點、在小正方形的頂點上;在方格紙中畫出以為一邊的菱形,點、在小正方形的頂點上,且菱形面積為;請直接寫出的面積.15、(8分)已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).(1)四邊形EFGH的形狀是,證明你的結(jié)論;(2)當四邊形ABCD的對角線滿足條件時,四邊形EFGH是矩形;(3)你學(xué)過的哪種特殊四邊形的中點四邊形是矩形?.(不證明)16、(8分)矩形紙片ABCD,AB=4,BC=12,E、F分別是AD、BC邊上的點,ED=1.將矩形紙片沿EF折疊,使點C落在AD邊上的點G處,點D落在點H處.(1)矩形紙片ABCD的面積為(2)如圖1,連結(jié)EC,四邊形CEGF是什么特殊四邊形,為什么?(1)M,N是AB邊上的兩個動點,且不與點A,B重合,MN=1,求四邊形EFMN周長的最小值.(計算結(jié)果保留根號)17、(10分)如圖,在矩形ABCD中AD=12,AB=9,E為AD的中點,G是DC上一點,連接BE,BG,GE,并延長GE交BA的延長線于點F,GC=5(1)求BG的長度;(2)求證:是直角三角形(3)求證:18、(10分)如圖,在平面直角坐標系中,兩點分別是軸和軸正半軸上兩個動點,以三點為頂點的矩形的面積為24,反比例函數(shù)(為常數(shù)且)的圖象與矩形的兩邊分別交于點.(1)若且點的橫坐標為3.①點的坐標為,點的坐標為(不需寫過程,直接寫出結(jié)果);②在軸上是否存在點,使的周長最???若存在,請求出的周長最小值;若不存在,請說明理由.(2)連接,在點的運動過程中,的面積會發(fā)生變化嗎?若變化,請說明理由,若不變,請用含的代數(shù)式表示出的面積.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)與向量相等的向量是__________.20、(4分)在平行四邊形ABCD中,AD=13,BAD和ADC的角平分線分別交BC于E,F(xiàn),且EF=6,則平行四邊形的周長是____________________21、(4分)如果關(guān)于x的不等式(a+1)x>a+1的解集為x<1,那么a的取值范圍是_____.22、(4分)甲,乙兩車都從A地出發(fā),沿相同的道路,以各自的速度勻速駛向B地.甲車先出發(fā),乙車出發(fā)一段時間后追上甲并反超,乙車到達B地后,立即按原路返回,在途中再次與甲車相遇。著兩車之間的路程為s(千米),與甲車行駛的時間t(小時)之間的圖象如圖所示.乙車從A地出發(fā)到返回A地需________小時.23、(4分)如圖,在△ABC中,∠C=90°,AB=10,AD是△ABC的一條角平分線.若CD=3,則△ABD的面積為_____.二、解答題(本大題共3個小題,共30分)24、(8分)為創(chuàng)建足球特色學(xué)校,營造足球文化氛圍,某學(xué)校隨機抽取部分八年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分—10分,B級:7分—7.9分,C級:6分—6.9分,D級:1分—5.9分)根據(jù)所給信息,解答以下問題:(1)樣本容量為,C對應(yīng)的扇形的圓心角是____度,補全條形統(tǒng)計圖;(2)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在____等級;(3)該校八年級有300名學(xué)生,請估計足球運球測試成績達到級的學(xué)生有多少人?25、(10分)如圖,在?ABCD中,點E,F(xiàn)在AC上,且∠ABE=∠CDF,求證:BE=DF.26、(12分)供電局的電力維修工要到30千米遠的郊區(qū)進行電力搶修.技術(shù)工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果他們同時到達.已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度?

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】

根據(jù)平行四邊形的性質(zhì):①邊:平行四邊形的對邊相等.②角:平行四邊形的對角相等.③對角線:平行四邊形的對角線互相平分;菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角進行解答即可.【詳解】菱形具有但平行四邊形不一定具有的是對角線互相垂直,故選A.本題主要考查了菱形和平行四邊形的性質(zhì),關(guān)鍵是熟練掌握二者的性質(zhì)定理.2、C【解析】過點P作PE⊥BC于E,

∵AB∥CD,PA⊥AB,

∴PD⊥CD,

∵BP和CP分別平分∠ABC和∠DCB,

∴PA=PE,PD=PE,

∴PE=PA=PD,

∵PA+PD=AD=8,

∴PA=PD=1,

∴PE=1.

故選C.3、B【解析】

求中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù).【詳解】把這些數(shù)從小到大為:18℃,19℃,19℃,20℃,20℃,21℃,21℃,21℃,22℃,22℃,

則中位數(shù)是:=20.5℃;

故選B.考查中位數(shù)問題,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).4、B【解析】

移項、方程兩邊同時加上一次項系數(shù)一半的平方,根據(jù)完全平方公式進行配方即可.【詳解】移項,得:配方,即,故選B.考查配方法解一元二次方程,解題的關(guān)鍵是把方程的左邊化成含有未知數(shù)的完全平方式,右邊是一個非負數(shù)形式.5、D【解析】

根據(jù)正比例函數(shù)的性質(zhì),時,隨的增大而減小,即,即可得解.【詳解】根據(jù)題意,得即故答案為D.此題主要考查正比例函數(shù)的性質(zhì),熟練掌握,即可解題.6、C【解析】

了解收集數(shù)據(jù)的方法及渠道,得出最適合用查閱資料的方法收集數(shù)據(jù)的選項.【詳解】A、B、D適合用調(diào)查的方法收集數(shù)據(jù),不符合題意;C適合用查閱資料的方法收集數(shù)據(jù),符合題意.故選C.本題考查了調(diào)查收集數(shù)據(jù)的過程與方法.解題關(guān)鍵是掌握收集數(shù)據(jù)的幾種方法:查資料、做實驗和做調(diào)查.7、C【解析】

檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數(shù)含開的盡的因數(shù),故A不符合題意;B、被開方數(shù)含分母,故B不符合題意;C、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意;D、被開方數(shù)含能開得盡方的因數(shù)或因式,故D不符合題意.故選C.本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.8、C【解析】

由直線y=kx+b經(jīng)過一、二、三象限可得出k>0,b>0,進而可得出?k?2<0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系可得出直線y=bx?k?2的圖象經(jīng)過第一、三、四象限.【詳解】解:∵直線y=kx+b經(jīng)過一、二、三象限,∴k>0,b>0,∴?k?2<0,∴直線y=bx?k?2的圖象經(jīng)過第一、三、四象限.故選:C.本題考查了一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0時,y=kx+b的圖象在一、二、三象限;k>0,b<0時,y=kx+b的圖象在一、三、四象限”是解題的關(guān)鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】

首先根據(jù)數(shù)軸的含義,得出,然后化簡所求式子,即可得解.【詳解】根據(jù)數(shù)軸,可得∴原式=故答案為.此題主要考查絕對值的性質(zhì),熟練掌握,即可解題.10、【解析】

由于點B與點D關(guān)于AC對稱,所以如果連接DQ,交AC于點P,那么△PBQ的周長最小,此時△PBQ的周長=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先計算出DQ的長度,再得出結(jié)果.【詳解】連接DQ,交AC于點P,連接PB、BD,BD交AC于O.

∵四邊形ABCD是正方形,

∴AC⊥BD,BO=OD,CD=2cm,

∴點B與點D關(guān)于AC對稱,

∴BP=DP,

∴BP+PQ=DP+PQ=DQ.

在Rt△CDQ中,DQ=cm,

∴△PBQ的周長的最小值為:BP+PQ+BQ=DQ+BQ=+1(cm).

故答案為(+1).本題考查了正方形的性質(zhì);軸對稱-最短路線問題,解題的關(guān)鍵是根據(jù)兩點之間線段最短,確定點P的位置.11、【解析】

利用軸對稱最短路徑求法,得出A點關(guān)于BD的對稱點為C點,再利用連接EC交BD于點P即為最短路徑位置,利用勾股定理求出即可.【詳解】解:連接AC,EC,EC與BD交于點P,此時PA+PE的最小,即PA+PE就是CE的長度

∵正方形ABCD中,BE=2,AE=1,

∴BC=AB=3,

∴CE===,故答案為.本題考查利用軸對稱求最短路徑問題以及正方形的性質(zhì)和勾股定理,利用正方形性質(zhì)得出A,C關(guān)于BD對稱是解題關(guān)鍵.12、2【解析】

根據(jù)二次根式能合并,可得同類二次根式,根據(jù)最簡二次根式的被開方數(shù)相同,可得關(guān)于a的方程,根據(jù)解方程,可得答案.【詳解】解:,由最簡二次根式與能合并成一項,得a+2=2.解得a=2.故答案是:2.本題考查同類二次根式的概念,同類二次根式是化為最簡二次根式后,被開方數(shù)相同的二次根式稱為同類二次根式.13、20°【解析】

先判斷出∠BAD=140°,AD=AB,再判斷出△BAD是等腰三角形,最后用三角形的內(nèi)角和定理即可得出結(jié)論.【詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn)140°,得到△ADE,∴∠BAD=140°,AD=AB,∵點B,C,D恰好在同一直線上,∴△BAD是頂角為140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°?∠BAD)=20°,故答案為:20°此題考查旋轉(zhuǎn)的性質(zhì),等腰三角形的判定與性質(zhì),三角形內(nèi)角和定理,解題關(guān)鍵在于判斷出△BAD是等腰三角形三、解答題(本大題共5個小題,共48分)14、(1)見解析;(2)見解析【解析】

(1)根據(jù)正方形的性質(zhì)畫出以為對角線的正方形即可;(2)根據(jù)菱形的性質(zhì)及勾股定理畫出菱形即可,由圖可得的面積.【詳解】(1)如圖,正方形即為所求;(2)如圖,菱形即為所求..本題考查的是作圖-應(yīng)用與設(shè)計作圖,熟知菱形與正方形的性質(zhì)及勾股定理是解答此題的關(guān)鍵.15、(1)平行四邊形;(2)互相垂直;(3)菱形.【解析】分析:(1)、連接BD,根據(jù)三角形中位線的性質(zhì)得出EH∥FG,EH=FG,從而得出平行四邊形;(2)、首先根據(jù)三角形中位線的性質(zhì)得出平行四邊形,根據(jù)對角線垂直得出一個角為直角,從而得出矩形;(3)、根據(jù)菱形的性質(zhì)和三角形中位線的性質(zhì)得出平行四邊形,然后根據(jù)對角線垂直得出矩形.詳解:(1)證明:連結(jié)BD.∵E、H分別是AB、AD中點,∴EH∥BD,EH=BD,同理FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形(2)當四邊形ABCD的對角線滿足互相垂直的條件時,四邊形EFGH是矩形.理由如下:如圖,連結(jié)AC、BD.∵E、F、G、H分別為四邊形ABCD四條邊上的中點,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四邊形EFGH是平行四邊形,∴平行四邊形EFGH是矩形;(3)菱形的中點四邊形是矩形.理由如下:如圖,連結(jié)AC、BD.∵E、F、G、H分別為四邊形ABCD四條邊上的中點,∴EH∥BD,HG∥AC,F(xiàn)G∥BD,EH=BD,F(xiàn)G=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形.∵四邊形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四邊形EFGH是矩形.點睛:本題主要考查的就是三角形中位線的性質(zhì)以及特殊平行四邊形的判定,屬于中等難度題型.三角形的中位線平行且等于第三邊的一半.解決這個問題的關(guān)鍵就是要明確特殊平行四邊形的判定定理.16、(1)2;(2)四邊形CEGF是菱形,理由見詳解;(1)四邊形EFMN周長的最小值為.【解析】

(1)矩形面積=長×寬,即可得到答案,(2)利用對角線互相垂直平分的四邊形是菱形進行證明,先證對角線相互垂直,再證對角線互相平分.(1)明確何時四邊形的周長最小,利用對稱、勾股定理、三角形相似,分別求出各條邊長即可.【詳解】解:(1)S矩形ABCD=AB?BC=12×4=2,故答案為:2.(2)四邊形CEGF是菱形,證明:連接CG交EF于點O,由折疊得:EF⊥CG,GO=CO,∵ABCD是矩形,∴AD∥BC,∴∠OGE=∠OCF,∠GEO=∠CFO∴△GOE≌△COF(AAS),∴OE=OF∴四邊形CEGF是菱形.因此,四邊形CEGF是菱形.(1)作F點關(guān)于點B的對稱點F1,則NF1=NF,當NF1∥EM時,四邊形EFMN周長最小,設(shè)EC=x,由(2)得:GE=GF=FC=x,在Rt△CDE中,∵ED2+DC2=EC2,∴12+42=EC2,∴EC=5=GE=FC=GF,在Rt△GCD中,,∴OC=GO=,在Rt△COE中,,∴EF=2OE=,當NF1∥EM時,易證△EAM∽△F1BN,∴,設(shè)AM=y,則BN=4-1-y=1-y,∴,解得:,此時,AM=,BN=,由勾股定理得:,,∴四邊形EFMN的周長為:故四邊形EFMN周長的最小值為:.考查矩形的性質(zhì)、菱形的判定和性質(zhì)、對稱及三角形相似的性質(zhì)和勾股定理等知識,綜合性很強,利用的知識較多,是一道較難得題目.17、(1)13(2)見解析(3)見解析【解析】

(1)在Rt△BCG中利用勾股定理即可求解;(2)利用勾股定理依次求出BE,EG,再利用勾股定理逆定理即可證明;(3)由E點為AD中點得到E為FG中點,再根據(jù)BE⊥FG得到△BFG為等腰三角形,得到∠F=∠BGF,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=12,∠C=90°,∴BG=(2)∵E為AD中點,∴AE=DE=6,∴BE=∵DG=CD-GC=4,∴EG=∴BG2=DG2+EG2,∴是直角三角形(3)∵AE=DE,∠FAE=∠D=90°,又∠AEF=∠DEG,∴△AEF≌△DEG,∴E為EG中點,又BE⊥FG,∴△BFG為等腰三角形,∴∠F=∠BGF,又BF∥CD,∴∠F=∴此題主要考查矩形的性質(zhì),解題的關(guān)鍵是熟知勾股定理與全等三角形的判定定理.18、(1)①點坐標為,點坐標為;②存在,周長;(2)不變,的面積為【解析】

(1)①求出點E的坐標,得出C點的縱坐標,根據(jù)面積為24即可求出C的坐標,得出F點橫坐標即可求解;②作點E關(guān)于x軸的對稱點G,連接GF,與x軸的交點為p,此時的周長最?。?)先算出三角形與三角形的面積,再求出三角形的面積即可.【詳解】(1)①點坐標為,點坐標為;②作點E關(guān)于x軸的對稱點G,連接GF,求與x軸的交點為p,此時的周長最小由①得EF=由對稱可得EP=PH,由H(3,-4)F(6,2)可得HF=3△PEF=EP+PF+EF=FH+EF=(2)不變,求出三角形與三角形的面積為求出三角形的面積為求出三角形的面積為設(shè)E位(a,),則S△AEO=,同理可得S△AFB=,∵矩形的面積為24F(,),C(,)S△CEF=S=24--k=.本題考查的是函數(shù)與矩形的綜合運用,熟練掌握三角形和對稱是解題的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】

由于向量,所以.【詳解】故答案為:此題考查向量的基本運算,解題關(guān)鍵在于掌握運算法則即可.20、41或33.【解析】

需要分兩種情況進行討論.由于平行四邊形的兩組對邊互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,則BE=AB;同理可得,CF=CD=1.而AB+CD=BE+CF=BC+FE=13+6=19,或AB+CD=BE+CF=BC-FE=13-6=7由此可以求周長.【詳解】解:分兩種情況,(1)如圖,當AE、DF相交時:∵AE平分∠BAD,∴∠1=∠2∵平行四邊形ABCD中,AD∥BC,BC=AD=13,EF=6∴∠1=∠3∴∠2=∠3∴AB=BE同理CD=CF∴AB+CD=BE+CF=BC+FE=13+6=19∴平行四邊形ABCD的周長=AB+CD+BC+AD=19+13×2=41;(二)當AE、DF不相交時:由角平分線和平行線,同(1)方法可得AB=BE,CD=CF∴AB+CD=BE+CF=BC-FE=13-6=7∴平行四邊形ABCD的周長=AB+CD+BC+AD=7+13×2=33;故答案為:41或33.本題考查角平分線的定義、平行四邊形的性質(zhì)、平行線的性質(zhì)等知識,解題關(guān)鍵“角平分線+一組平行線=等腰三角形”.21、a<﹣1【解析】

根據(jù)不等式兩邊同時除以一個正數(shù)不等號方向不變,同時除以一個負數(shù)不等號方向改變即可解本題.【詳解】解:∵不等式(a+1)x>a+1的解集為x<1,∴a+1<0,∴a<﹣1,故答案為:a<﹣1.本題考查了不等式的基本性質(zhì),熟練掌握不等式兩邊同時除以一個負數(shù)不等號方向改變是解決本題的關(guān)鍵.22、【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以列出相應(yīng)的方程組,從而可以求得甲、乙兩車的速度和乙到達B地時的時間,再根據(jù)函數(shù)圖象即可求得乙車從A地出發(fā)到返回A地需的時間.【詳解】解:如圖,設(shè)甲車的速度為a千米/小時,乙的速度為b千米/小時,甲乙第一相遇之后在c小時,相距200千米,則,解得:,∴乙車從A地出發(fā)到返回A地需

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論