版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆廣東省深圳市卓識(shí)教育深圳實(shí)驗(yàn)部高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左、右焦點(diǎn)分別為,半焦距為c,過點(diǎn)作一條漸近線的垂線,垂足為P,若的面積為,則該雙曲線的離心率為()A.3 B.2C. D.2.已知實(shí)數(shù)、滿足,則的最大值為()A. B.C. D.3.已知數(shù)列的前項(xiàng)和,且,則()A. B.C. D.4.定義在區(qū)間上的函數(shù)滿足:對(duì)恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.5.以軸為對(duì)稱軸,頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或6.已知中,內(nèi)角所對(duì)的邊分別,若,,,則()A. B.C. D.7.已知拋物線的焦點(diǎn)為F,直線l經(jīng)過點(diǎn)F交拋物線C于A,B兩點(diǎn),交拋物淺C的準(zhǔn)線于點(diǎn)P,若,則為()A.2 B.3C.4 D.68.某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.9.設(shè),若,則()A. B.C. D.10.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.811.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六12.已知半徑為2的圓經(jīng)過點(diǎn)(5,12),則其圓心到原點(diǎn)的距離的最小值為()A.10 B.11C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知橢圓+y2=1的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,則點(diǎn)G橫坐標(biāo)的取值范圍為________14.某學(xué)生到某工廠進(jìn)行勞動(dòng)實(shí)踐,利用打印技術(shù)制作模型.如圖,該模型為一個(gè)大圓柱中挖去一個(gè)小圓柱后剩余部分(兩個(gè)圓柱底面圓的圓心重合),大圓柱的軸截面是邊長(zhǎng)為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(?。?5.在△ABC中,,AB=3,,則________16.已知雙曲線的左,右焦點(diǎn)分別為,P是該雙曲線右支上一點(diǎn),且(O為坐標(biāo)原點(diǎn)),,則雙曲線C的離心率為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2020年10月,中共中央辦公廳、國(guó)務(wù)院辦公廳印發(fā)了《關(guān)于全面加強(qiáng)和改進(jìn)新時(shí)代學(xué)校體育工作的意見》,某地積極開展中小學(xué)健康促進(jìn)行動(dòng),發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分?jǐn)?shù),規(guī)定:考生須參加立定跳遠(yuǎn)、擲實(shí)心球、一分鐘跳繩三項(xiàng)測(cè)試,其中一分鐘跳繩滿分20分,某校為掌握九年級(jí)學(xué)生一分鐘跳繩情況,隨機(jī)抽取了100名學(xué)生測(cè)試,其一分一分鐘跳繩個(gè)數(shù)成績(jī)(分)1617181920頻率(1)若每分鐘跳繩成績(jī)不足18分,則認(rèn)為該學(xué)生跳繩成績(jī)不及格,求在進(jìn)行測(cè)試的100名學(xué)生中跳繩成績(jī)不及格的人數(shù)為多少?(2)該學(xué)校決定由這次跳繩測(cè)試一分鐘跳繩個(gè)數(shù)在205以上(包括205)的學(xué)生組成“小小教練員"團(tuán)隊(duì),小明和小華是該團(tuán)隊(duì)的成員,現(xiàn)學(xué)校要從該團(tuán)隊(duì)中選派2名同學(xué)參加某跳繩比賽,求小明和小華至少有一人被選派的概率18.(12分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點(diǎn)使平面和平面所成角的余弦值為若存在,確定點(diǎn)的位置;若不存在,說明理由.19.(12分)已知數(shù)列的前項(xiàng)和為,,.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)若數(shù)列,,求前項(xiàng)和.20.(12分)在中,角A,B,C的對(duì)邊分別為a,b,c,且求A和B的大?。蝗鬗,N是邊AB上的點(diǎn),,求的面積的最小值21.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn).(1)若為線段的中點(diǎn),證明:平面;(2)線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求的長(zhǎng),若不存在,請(qǐng)說明理由.22.(10分)在等差數(shù)列中,已知公差,前項(xiàng)和(其中)(1)求;(2)求和:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)給定條件求出,再計(jì)算面積列式計(jì)算作答.【詳解】依題意,點(diǎn),由雙曲線對(duì)稱性不妨取漸近線,即,則,令坐標(biāo)原點(diǎn)為O,中,,又點(diǎn)O是線段的中點(diǎn),因此,,則有,即,,,所以雙曲線的離心率為故選:D2、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結(jié)合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點(diǎn),代數(shù)式的幾何意義是連接可行域內(nèi)一點(diǎn)與定點(diǎn)連線的斜率,由圖可知,當(dāng)點(diǎn)在可行域內(nèi)運(yùn)動(dòng)時(shí),直線的傾斜角為銳角,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線的傾斜角最大,此時(shí)取最大值,即.故選:A.3、C【解析】由an=Sn-Sn-1,【詳解】解:因?yàn)椋?,,兩式相減可得,即,因?yàn)?,,所以,即,時(shí),也滿足上式,所以,所以,故選:C.4、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點(diǎn)睛】函數(shù)的性質(zhì)是高考的重點(diǎn)內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問題,通過題目中給定的不等式,分別構(gòu)造兩個(gè)不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時(shí),必須堅(jiān)持定義域優(yōu)先的原則.對(duì)于函數(shù)實(shí)際應(yīng)用問題,注意挖掘隱含在實(shí)際中的條件,避免忽略實(shí)際意義對(duì)定義域的影響5、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因?yàn)榻裹c(diǎn)到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C6、B【解析】利用正弦定理可直接求得結(jié)果.【詳解】在中,由正弦定理得:.故選:B.7、C【解析】由題意可知設(shè),由可得,可求得,,根據(jù)模長(zhǎng)公式計(jì)算即可得出結(jié)果.【詳解】由題意可知,準(zhǔn)線方程為,設(shè),可知,,解得:,代入到拋物線方程可得:.,故選:C8、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B9、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因?yàn)?,且,所?所以,,所以.故選:B10、D【解析】使用遞推公式逐個(gè)求解,直到求出即可.【詳解】因?yàn)樗?,,?故選:D11、C【解析】求出二項(xiàng)式定理的通項(xiàng)公式,得到除以7余數(shù)是1,然后利用周期性進(jìn)行計(jì)算即可【詳解】解:一個(gè)星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:12、B【解析】由條件可得圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,然后可得答案.【詳解】因?yàn)榘霃綖?的圓經(jīng)過點(diǎn)(5,12),所以圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,所以圓心到原點(diǎn)的距離的最小值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出線段的垂直平分線方程,可求得點(diǎn)的橫坐標(biāo),利用不等式的基本性質(zhì)可求得點(diǎn)的橫坐標(biāo)的取值范圍.【詳解】設(shè)直線的方程為,聯(lián)立,整理可得,因?yàn)橹本€過橢圓的左焦點(diǎn),所以方程有兩個(gè)不相等的實(shí)根設(shè)點(diǎn)、,設(shè)的中點(diǎn)為,則,,直線的垂直平分線的方程為,令,則.因?yàn)椋怨庶c(diǎn)的橫坐標(biāo)的取值范圍.故答案為:14、4500【解析】根據(jù)題意可知大圓柱底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案為:4500.15、3【解析】計(jì)算得出,可得出,再利用平面向量數(shù)量積的運(yùn)算性質(zhì)可求得結(jié)果.【詳解】∵,,,∴故答案為:3.16、【解析】由已知及向量數(shù)量積的幾何意義易知,根據(jù)雙曲線的性質(zhì)可得,再由雙曲線的定義及勾股定理構(gòu)造關(guān)于雙曲線參數(shù)的齊次方程求離心率.【詳解】∵,∴△為等腰三角形且,又,∴,∴.又,,∴,則,可得,∴雙曲線C的離心率為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)14人;(2).【解析】(1)根據(jù)頻率直方表區(qū)間成績(jī)及其對(duì)應(yīng)的頻率,即可求每分鐘跳繩成績(jī)不足18分的人數(shù).(2)由表格數(shù)據(jù)求出一分鐘跳繩個(gè)數(shù)在205以上(包括205)的學(xué)生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個(gè)被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績(jī)不足18分,即為成績(jī)是16分或17分,在進(jìn)行測(cè)試的100名學(xué)生中跳繩成績(jī)不及格人數(shù)為:人)(2)一分鐘跳繩個(gè)數(shù)在205以上(包括205)的學(xué)生頻率為,其人數(shù)為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個(gè)被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.18、(1)證明見解析;(2)在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn).【解析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內(nèi)過C作,再以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,利用空間向量計(jì)算判斷作答.【小問1詳解】在三棱柱中,四邊形是平行四邊形,而,則是菱形,連接,如圖,則有,因,,平面,于是得平面,而平面,則,由得,,平面,從而得平面,又平面,所以平面平面.【小問2詳解】在平面內(nèi)過C作,由(1)知平面平面,平面平面,則平面,以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,如圖,因,,則,假設(shè)在線段上存在符合要求的點(diǎn)P,設(shè)其坐標(biāo)為,則有,設(shè)平面的一個(gè)法向量,則有,令得,而平面的一個(gè)法向量,依題意,,化簡(jiǎn)整理得:而,解得,所以在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn),使平面和平面所成角的余弦值為.19、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,兩式作差可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,即可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得;(3)利用奇偶分組法,結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得.【小問1詳解】解:當(dāng)時(shí),,可得,當(dāng)時(shí),由可得,上述兩個(gè)等式作差得,可得,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,故.【小問2詳解】解:,所以,,所以,,上述兩個(gè)等式作差得,因此,.【小問3詳解】解:由題意可得,,所以,.20、(1),(2)【解析】利用正余弦定理化簡(jiǎn)即求解A和B的大小利用正弦定理把CN、CM表示出來,結(jié)合三角函數(shù)的性質(zhì),即可求解的面積的最小值【詳解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如圖所示:設(shè),,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此時(shí)故的面積的最小值為【點(diǎn)睛】本題考查了正余弦定理的應(yīng)用,三角函數(shù)的有界限求解最值范圍,考查了推理能力與計(jì)算能力,屬于中檔題21、(1)證明見解析;(2)存在點(diǎn),且的長(zhǎng)為,理由見解析.【解析】(1)取的中點(diǎn)為,連接,得到,結(jié)合面面平行的判定定理證得平面平面,進(jìn)而得到平面;(2)以為原點(diǎn),所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標(biāo)系,設(shè),求得的法向量為和向量,結(jié)合向量的夾角公式列出方程,求得的值,即可求解.【小問1詳解】證明:取的中點(diǎn)為,連接,因?yàn)榉謩e為的中點(diǎn),所以,又因?yàn)槠矫?,且,所以平面平面,又由平面,所以平?【小問2詳解】解:以為原點(diǎn),所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)榈酌媸沁呴L(zhǎng)為2的菱形,設(shè),在直角中,可得,在直角中,可得,在中,因?yàn)椋?,即,解得,設(shè),可得,則,設(shè)平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 氣體滅火維修合同范例
- 天津打標(biāo)機(jī)采購(gòu)合同范例
- 工程木門供貨合同范例
- 抖音運(yùn)營(yíng)管理合同范例
- 民宅改造商鋪合同范例
- 毛坯鍛件加工合同范例
- 危險(xiǎn)物料處置合同范例
- 高中生物 第一冊(cè) 第4章 生命的物質(zhì)變化和能量轉(zhuǎn)換 4.4 生物體內(nèi)營(yíng)養(yǎng)物質(zhì)的轉(zhuǎn)變教學(xué)實(shí)錄1 滬科版
- 七年級(jí)歷史上冊(cè) 第二單元 夏商周時(shí)期:早期國(guó)家與社會(huì)變革第8課 百家爭(zhēng)鳴教學(xué)實(shí)錄 新人教版
- 兼職開辦診所合同范例
- 四川省達(dá)州市宣漢縣2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題含答案解析
- 河道整治工程監(jiān)理大綱
- 《物聯(lián)網(wǎng)應(yīng)用技術(shù)》期末試卷及答案2套
- sapho綜合癥護(hù)理查房
- 高中美術(shù)選修第四課 人間生活【全國(guó)一等獎(jiǎng)】
- 《未來汽車》課件
- 神經(jīng)外科疼痛護(hù)理查房
- 專門學(xué)校情況報(bào)告
- 工業(yè)互聯(lián)網(wǎng)平臺(tái)構(gòu)建
- 數(shù)學(xué)思想與方法-國(guó)家開放大學(xué)電大機(jī)考網(wǎng)考題目答案
- 杭州奧泰生物技術(shù)股份有限公司IVD研發(fā)中心建設(shè)項(xiàng)目環(huán)境影響報(bào)告表
評(píng)論
0/150
提交評(píng)論