歐洲電力部門需求靈活性的價值-53正式版-WN8_第1頁
歐洲電力部門需求靈活性的價值-53正式版-WN8_第2頁
歐洲電力部門需求靈活性的價值-53正式版-WN8_第3頁
歐洲電力部門需求靈活性的價值-53正式版-WN8_第4頁
歐洲電力部門需求靈活性的價值-53正式版-WN8_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ValueofDemandFlexibilityintheEuropeanPowerSectorFinalReport03-10-2023Keyfindings??ThisreportexploresdifferentscenariosfortheEuropeanpoweranddistrictheatingsystemeachrepresentingvaryingdegreesofdemandflexibility.ThescenarioscomplywiththeEU'sobjectiveofbecomingclimateneutralby2050.Whenwecomparethe"Reference"scenario,whichassumesfrozenpolicywithregardstoflexibilityandminimaladvancementindemandresponse(DR)technologies,withthe"Flex"scenario,whereregulatorychanges,technologicaladvancements,andheightenedconsumerawarenessenabledemandresponse,weobservethefollowingadvantages:——————Asocio-economicbenefitof€15.5billionannuallybytheyear2050.Asubstantialreductioninconsumercosts,amountingtoapproximately€26billionannuallyby2050.Adecreaseinaverageconsumerpowerprices(wholesale)from€61/MWhto€55/MWh.Theabatementof40milliontonsofCO2in2030.Areducedneedforapproximately300GWofbatterycapacityand90GWlessgaspeakcapacity.Additionally,anintegrationof100GWmoresolarcapacityintotheenergymix.Investmentsininterconnectorsbetweenbiddingzonesdecreasedby21%(61GW)?Themodellingconsidersonlybenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.??Thesefindingsunderscorethepotentialbenefitsassociatedwithembracingdemandresponseandfosteringaflexibleenergylandscape.Pleasenotethatthecostsrelatedtorealizingthepotentialforload-shiftamongcertainconsumers,includinghouseholds,services,industries,andelectricvehicle(EV)owners,havenotbeenfactoredintotheanalysis.Introduction4ProjectcontextDanfossisactivelyengagedinassessingtheroleofdemand-sideflexibilitywithintheforthcomingEuropeanpowersystemlandscape.Againstthisbackdrop,wehavepreparedalong-termanalysisspanningthemilestoneyearsof2025,2030,and2050.Theprimaryobjectiveofthisanalysisistoquantifytheholisticvaluethatvariousformsofdemandflexibilitycancontribute.Ourevaluationhingesonasetofkeymetricsthatencompasssocioeconomicimpact,monetaryadvantagesforconsumers,reductionsinCO2emissionsandfuelconsumption,andpowerprices.Togainathoroughunderstanding,thesecriticalaspectswillbeinvestigatedthroughthelensofthreedistinctscenarios,eachrepresentingvaryingdegreesofdemandflexibility.TheanalysiswillbeconductedbyutilizingtheBalmorelpowersystemmodeltoexamineEuropeanday-aheadmarkets.Thisapproachwillfocusonoptimizingtheintricateinterplaybetweensupplyanddemanddynamics,withtheprimaryaimofminimizingcostsfortheoverallsystemsolution.Note,thatthemodellingconsidersonlybenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.5Balmorelisafundamentalpartial-equilibriummodelofthepoweranddistrictheatingsystem.Themodelfindsleast-costsolutionsbasedonassumptionssuchasthedevelopmentoffuelprices,demanddevelopment,technologycostsandcharacteristics,renewableresourcesandotheressentialparameters.BalmorelenergysystemmodellingtoolThemodeliscapableofsimultaneousinvestmentanddispatchoptimisation,showingoptimalsolutionsforpowergenerationandinterconnectorcapacity,dispatch,transmissionflowandelectricityprices.Modeldevelopedtosupporttechnicalandpolicyanalysesofpowersystems.Optimizationofeconomicaldispatchandcapacityexpansionsolutionfortherepresentedenergysystem.Characteristics:open-source,customizable,scalable,transparentMainevaluationmeasures?

Powerpricesandmarketvalues?

Generation&capacitybalancesModeldimensions?

CO2andpollutantemissions?

Socio-economicsystemcostsTemporalscope?

Selectedoptimizationyears?

Timeaggregatedinvestmentoptimization?

HourlydispatchoptimizationGeographicalscope?

Nordics(biddingzones)?

Germany(4regions)?

Baltics?

CentralEurope,UKandItaly?

IberianpeninsulaNote:OvalshapesintheNorthandBalticseasrepresentexisting&futureoffshorewindlocationsinanaggregatedmatter.Illustratedlinesrepresenttheoptionsoftransmissioncapacities.NomenclatureAcronymCAPEXCHPTermAcronymInd.HTermCapitalcostsIndividualHeatingLoadDurationCurveOperationexpendituresPriceDurationCurvePowertoXCombinedHeatandPowerDistrictHeatingDemandSideResponseEuropeanUnionElectricVehiclesFullLoadHoursHydrogenLDCDHOPEXPDCPtXDSREUEVsPVPhotovoltaicsFLHTYNDPV2GTenYearDevelopmentPlantH2VehicletoGridVariableRenewableEnergySourcesHSDCHyperScaleDataCentersVRES82PowerSystemExpectationsElectricitydemandinEuropeTheenvisionedelectrificationofheating,industryandtransportsectorsisexpectedtoincreaseelectricitytwofoldtowards2030.TotalElectricityDemand7.0006.0005.0004.0003.0002.0001.0000Thefollowingsourcesareusedfordemandprojections:?

REPowerEUforhydrogenproductiontargetstowards2030.—

REPowerEUhasbeendevelopedinthewakeofRussia’s

invasionofUkraineandassumes10mill.tondomestichydrogenproduction(330TWh)intheEUalreadyby2030.—

TheEUCommissionMIX-scenariohavebeenusedforthelong-termhydrogendemand.?

TYNDP’s

GlobalAmbitionscenarioforthedevelopmentoftotaldemandforclassicdemand,electricvehiclesandindividualheating.202520302050Electricityconsumption:ClassicdemandElectricityconsumption-HSDCsElectricitytoindustrialelectrificationElectricitytoP2XElectricitytodistrictheatingElectricitytoindividualheatingElectricityconsumption:ElectricVehicles?

Electricityusefordistrictheatingissubjecttomodeloptimisation.10DemandbucketsinthemodelDemandbucketClassicDescriptionAssociatedcostofflexibilityClassicelectricitydemandmainlyforhouseholds,theindustryandservicesector.Nodirectcosts.ThemodelincludesaninertiawhichensuresthatdemandContainsdemandtypesnotexplicitlycoveredundertheothercategories.EU2021mix(approx.):flexibilityisonlyactivatedwhenthereisapricedifferenceof15€/MWh.????43%industry28%service26%households3%agricultureElectricvehiclesDemandincludesallelectricityforroadtransport.Initialprofileisbasedonchargingpatternsmatchingtransportdemand(Estimatedforindividualcountriesflexibilityisonlyactivatedwhenthereisapricedifferenceof15€/MWh.basedonempiricaldatafromNorway)Nodirectcosts.ThemodelincludesaninertiawhichensuresthatdemandV2Gactivitiesfacetheoccurringmarketcosts(marketclearingspotprices),essentiallyobtainingrevenuesfrompowerarbitrage.Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemandflexibilityisonlyactivatedwhenthereisapricedifferenceofabout55€/MWhIndividualheatingIncludeselectricityconsumptionforspaceheatinginbuildings.Thedemandissuppliedbyheatpumpsandelectricboilers.Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemandflexibilityisonlyactivatedwhenthereisapricedifferenceof10€/MWh.DistrictheatingHeatdemandfordistrictheatingisincluded.Heatpumpsandelectricboilersareamongtheoptionstosupplythedistrictheatingdemand.Otheroptionsarefuel-capacity.Usingalternativeoptionsforheatgenerationyieldsadditionalcost.baseddistrictheatinggenerationfromheatonlyboilersorCHP.InvestmentandoperationalcostforadditionalelectricboilersorheatpumpInvestmentcostandoperationalcostsofsteeltanksandpitstorages.DependingonthescenariothemodelmayinvestinsteeltanksandpitstoragesPower-to-XDemandforproductionofe-gasses,e-liquidsandhydrogenbasedonEUcommissionscenarios.Modelledaselectricityconsuminggenerationfacilities(electrolysers).Investmentandoperationalcostforelectrolysersandcavernstoragesincluded.Dependingonscenariomodeloptimisedhydrogenstoragescanbeinstalledtoenableflexibleuseofelectrolysers,whiledemandismodelledconstant.GenerationcapacityinEuropeBuildoutrequirementsandlevelsinthemodelarea??Thedevelopmentinnewcapacityisdrivenbydemanddevelopment,technologycostsandresourceassumptions.Moreover,importantpoliticaltargetsaretakenintoaccount,includingminimumbuildoutforrenewableenergy,coalphaseoutplansandnuclearplans.2.5002.0001.5001.000500Windandsolar:Asaminimumlevelforrenewableenergy,countriesareexpectedtofulfilthelevelsofwindandsolarpowersetoutinENTSO-ETYNDP-scenarioNationaltrendstowards2030.Keynationalareincludedaswell,Germanyforexample,isexpectedtopursuehighertargetsforwindandsolarpowerassetoutintheGovernment’s

EasterPackagefromApril2022,aimingfor215GWsolarpowerandaround120GWofonshorewindin2030.Additionally,80%oftheambitious30GWoffshorewindtargetby2030isassumedrealised.Beyond2030,investmentsarebasedonmodeloptimisation.ForonshorewindandsolarPV,countryspecificcapsareemployedtoreflectarealisticdeploymentthatconsidersplanningandgridconstraintsatthelocallevel.Theseconstraintsaregraduallyrelaxedovertime.??Nuclearcapacityisdeterminedexogenously.ThecapacitybasedonplansfromWorldNuclearAssociationfordecommissioningbutwithnewplantsbeingbuiltintheUK,FinlandandPoland.Thetotalcapacitydeclinesfromaround100GWin2021to~90GWin2050.020252030Minonshore203520402050OnshorecapOffshorecapSolarcapMaxonshoreMaxoffshoreMaxsolarMinoffshoreMinsolarThermalcapacity:Currentplansfordecommissioningofcoal-firedcapacityareconsidered.Otherthanthat,decommissioningofandinvestmentsinthermalpowercapacityisdeterminedbythemodel.Investmentinbiomasscapacity(woodchips,woodpellets,straw)isconstrainedat30GWby2030(correspondingtoafuelinputofapprox.1.900PJ)toreflectthatthecurrentpipelineofnewbiomasscapacityislimited.Towards2050,thebiomassconstraintisliftedto40GW.Note:oMinandmaxshowassumptionsonminimumandmaximumpossiblebuildoutpathways.Nodifferencebetweenthetwomeans,meansthataexactcapacityisinstalled.ooo“Cap”

showscapacityasaresultofmodeloptimisation.SpainandPortugalarenotincludedinthepresentgraph.12FuelpricesFuelandCO2prices6050403020100Fuelprices??Futures(April2023).Untilandincluding2026Longterm.Pricesexpectedtoconvergetolongtermequilibriumpricesin2030???IEAWorldEnergyOutlook2022AnnouncedPledgesscenarioNaturalgas:LNGimportprice(Japan).CoalLightoilNaturalgasWoodchipsWoodpellets?Currenthighgaspricesexpectedtonormaliseovertime,butoutlooksaredifficultincurrentsituation.Towards2030,reduceddependenceonnaturalgasandhighglobalbuildoutofrenewableslowersdemandforfossilfuelsandthuspricesETSprice250CO2-prices20015010050??Forwardprices(April2023).Untilandincluding2026Longterm.PricesexpectedtoconvergetoAnnouncedPledgesscenariofromWEO2022in2030andonwards.?HighCO-prices–

alsogoingforwardto2030.However,current2pricesarealsotosomeextentaffectedbyhighgasprices.013Studystructure14AnalysedscenariosEaEnergyAnalyses’

referenceprojectiontowards2050willbeutilisedasabasisforthepresentstudy,withkeyflexibilityaspectsvaryingacrossthreescenarios.I.A“Reference”

scenarioreflectingfrozenpolicyandlimiteddevelopmentofDRtechnologies.Thereferencedisplaysrelativelylowlevelsofflexibility,includinginflexibleelectricityconsumptionpatternsamongacertainportionofthePtXcapacity.II.ThePtXsectorisexpectedtoprovidethehighestlevelofflexibilityinthesysteminupcomingyears,duetoitsdemandmagnitudebutalsocharacteristics.Therefore,anintermediatescenario(“PtX

Flex”)

willbeanalysedtoshedlightonthevaluethatPtXrelatedflexibilitybringstothesystemontopofreferencecase.III.Finally,themostflexiblescenario(“Flex”),

willreflecttheadditionoffurtherdemand-sideflexibilityactionsineachdemandcategory,showcasingtheoverallemergedvaluefromthedeploymentofdifferentflexibilitymeasures.Anoverviewofthevaryingaspectsbetweenscenarioscanbeseeninthefollowingslide:15DefinitionofscenariosDemandbucketReferenceReference+PtXflexibility(“PtXFlex”)Flexibilityscenario(“Flex”)Classic2,5%fuel-shift(permanentreductionAsReferenceindemand)10%fuel-shift(permanentreductionindemand)20%load-shift(upto2hours).5%load-shift(upto2hours).25%realisedin2025,50%in2030,100%by2050.25%realisedin2025,50%in2030,100%by2050.Electricvehicles20%oftotalloadforelectricroadtransportwillparticipateinflexiblechargingandbeabletomoveplannedchargingbyupto4hours.AsReference65%oftotalloadforelectricroadtransportwillparticipateinflexiblechargingandbeabletomoveplannedchargingbyupto4hours.50%oftotalloadV2G“fit”.15%oftotalloadV2G“fit”.25%realisedin2025,50%in2030,100%by2050.25%realisedin2025,50%in2030,100%by2050.IndividualheatingFixedconsumptionpattern.AsReferenceAsReferenceFlexibleheatgenerationbyadjustmentstoinitialdemandprofile.Averagedemandcanbemoved3hours.25%realisedin2025,50%in2030,100%by2050.AsReferenceplus:DistrictheatingutilitiesFlexibilityconsistsoftheoptiontofulfiltheheatdemandbyelectricityorotherheatgeneration,dependingonthepowerprices.Themodelmayinvestinsteeltanksandpitstorages.Load-shiftamongdistrictheatingconsumers:2025:4hoursflex,25%realised2030:5hoursflex,50%realised2050:6hoursflex,75%realisedAsReference+PtXflexibilityThemodelmayinvestinsteeltanksonly.75%ofPtXdemandoperatesflexible100%flexiblePtXload.Power-to-X25%ofPtXdemandfollowsafixedModeloptimisedhydrogenstoragescanbeinstalledtoenableflexibleloadcurve(flatthroughouttheyear).useofelectrolysers,whiledemandismodelledconstant.Costofstoragereflectsthoseoflarge-scalecaverns,assumingahydrogenbackboneinfrastructureisavailabletoconnecthydrogenproducersdirectlytoconsumersandcentrallylocalisedlargescalehydrogencaverns.Factorsaffectingtherealisationofscenarios?

Severalfactorsaffecttheuptakeofdemandresponsetechnologiesincluding1.2.3.4.RegulatoryEnvironment:Governmentpoliciesandregulationscangreatlyimpactdemandresponseadoption.Supportivepolicies,incentives,andmandatescanencouragetheimplementationofdemandresponseprograms.TechnologyAvailabilityandMaturity:Theavailabilityandmaturityofdemandresponsetechnologiesplayacrucialrole.Ifadvancedandcost-effectivetechnologiesarereadilyaccessible,itbecomeseasierforconsumersandbusinessestoimplementdemandresponsestrategies.ConsumerAwarenessandEducation:Lackofawarenessorunderstandingofdemandresponsecanbeabarrier.Effectiveeducationandoutreachprogramscanhelpconsumersandbusinessesmakeinformeddecisions.ElectricitypricesandGridneeds:Theeconomicbenefitofbeingflexibledependsonthestateofthegridandthecompositionofpowersupplyetc.Strongerincentiveswillencouragemoredemandresponse.?

Thereferencescenarioisintendedtoreflectasituationwherefactors1-3donotimproveconsiderablycomparedtotoday(factor4isconsideredwithinthemodelling*).?

Theflexibilityscenariosshowdevelopments,wheretheregulatoryenvironment,technologydevelopmentandconsumerawarenessfacilitatedemandresponse.*Themodellingconsidersbenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.Demand-sideflexibilitymeasuresinEuropeo

Electricvehiclesdemandincludesallelectricityforroadtransport.Thisdemandisflexible,andanincreasingsharecanbemovedfor4hours.Thus,themodellingaccountsforsmartcharging.Vehicle-to-gridsolutionscanalsobeenabled.TotalElectricityDemandProgression3.000o

Electricityforindividualheatingincludeselectricityconsumptionforspaceheatinginbuildings,whichismodelledasheatdemand.Thedemandissuppliedbyheatpumps,directelectricheatingandelectricboilers.Apartoftheindividualheatdemandcanbeconsideredflexible,withtheoptionofload-shiftinginfuturehours.2.5002.0001.5001.000500o

Electricityfordistrictheatingisbasedonmodeloptimization.Heatpumpsandelectricboilersareamongtheoptionstosupplythedistrictheatingdemand.Otheroptionsarefuel-baseddistrictheatinggenerationfromheatonlyboilersorCHP.0o

ElectricityforP2Xisincludedbasedontheconsumptionofe-gasses,e-liquidsandhydrogen.AP2Xefficiencyof70%isassumedforhydrogenand60%fore-gassesande-liquids.Ifprofitable,storagescanbeinstalledtomoveportionsofthedemand,henceprovidingfurtherflexibilitytothesystem.202520302050Electricityconsumption:ClassicdemandElectricityconsumption-HSDCsElectricitytoindustrialelectrificationElectricitytoP2XElectricitytodistrictheatingElectricitytoindividualheatingo

Thelevelofflexibilityintheclassicdemandisrisingfrom2020towards2050againsttheaveragehourlydemand.Thedemandcanbemovedfor2hoursbypayinganactivationprice.Thisdemandincludesindustrythatalsohaveflexibilitytomoveproductiontolowpricehours.Electricityconsumption:ElectricVehiclesNote:ooHSDCs:HyperScaleDataCentersClassicdemandreflectspowerusefor:Industry,Service,Households,Agriculture.oIllustratedannualdemandlevelsreflecttheanalysed“Flex”

scenarioasdescribedinupcomingsections.18ReferenceFlexibilityonclassicdemand:LowVREweek(W48),2050Assumptionsondemandresponseforclassicelectricitydemand(households+industry)arebasedonanestimateoflong-termflexibilityagainsttheaveragedemandin2050.Demandresponseisimplementedasapotentialtoshiftofdemandintimeforupto2hours.Forcomparison,ENTSO-EreportedaverageDSR(Demandsideresponse)ofroughly9%ofaveragedemandin2040intheTYNDP2018GlobalClimateActionscenario.Flex50%offlexibilityisactivatedatacostof15€/MWh,

whiletheremaining50%offlexibilityisactivatedat30€/MWh,

meaningthatthedifferencebetweenachievableelectricitypriceshastobeatleast15€/MWh,

beforeloadshiftingtakesplace.Deploymentoflocallydistributedbatterysolutions(forexampleresidentialbatteriesincombinationwithrooftopPV)arenotconsideredinthemodellingandcouldprovideaportionofthisflexibilitypotential.Utilityscalebatteriesarenotincludedintheestimateshereastheyaresubjecttoexplicitoptimisation.Note:19oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.ChosenregionreflectsMunichinGermany.Season“S”

correspondtothereflectedweeknumber.FlexibilityonelectricvehiclesChargingpatternsIllustrationofchargingpatternsandlimits(2030)Chargingpatternsforelectricvehiclesareassumedtobeflexiblerelativetoaninitialchargingprofile.Theinitialchargingprofileisbasedonestimatesofimmediatechargingprofilesaccordingtodrivingpatterns(Fullbluelineforweekdaysandfullgreylineforweekends).1ThesechargingprofileswouldensureEV’s

arefullychargedasfastaspossibleafterdriving.Thus,chargingprofilefollowpeakcommutinghourswithalittletimelag.Chargingpatternsarebasedonresearchonpersonalvehicles,butareusedheretorepresentallelectricityuseforroadtransport.12%10%8%6%4%Onlyashareofallvehiclesareassumedtobeflexible,whichleadstocertainminimum(reddashedline)andmaximum(bluedashedline)loadsforchargingelectricvehiclesatalltimes.Theresultingpotentialloadpatternsexcludeoptionforvehicle-to-gridtechnologies,whichcouldsignificantlyincreaseflexibilityoptions,albeitatahighercost,totakeintoaccounttechnologyneedsandlifetimereductionsonbatteriesduetoadditionalcycling.2%0%AllvehiclesMaximumallvehiclesAllvehicles(Weekend)Minimumallvehicles(Non-flexiblevehicles)1Source:Liu,Z.,Nielsen,A.H.,&Wu,Q.(2016).OptimalOperationofEVsandHPsintheNordicPowerSystem.TechnicalUniversityofDenmark,DepartmentofElectricalEngineering.20LimitsonflexibilityofelectricvehiclesTimeshiftingFlexibilityisimplementedasapotentialtoshifttheaveragechargingload(oftheflexiblevehicles)ofupto4hoursintime.EnergydemandIllustrationofchargingpatternsandlimits(2030)hastobeservedovera24hourperiod,andallenergydemandhastobeservedby7aminthemorning,whereallEVsarechargedtothedesiredlevel12%10%8%6%4%2%0%RestrictiononflexibilityFlexibilityofchargingforelectricvehiclesissubjecttoanumberofrestrictions,whichdevelopovertimeoOnlyafractionofvehiclesparticipateinflexiblecharging,meaningtheremainingvehiclewillfollowtheinitialchargingpatternatalltime.Themaximumchargingislimitedtoamultipleoftheestimatedpeakdemandoftheinitialprofileo

Maximumchargingforflexiblevehiclescannotexceed125%ofthepeakoftheirinitialchargingprofile.o

Flexibilityisactivatedatacostof15€/MWh

independentoftimedifference.Thismeans,thedifferencebetweenachievableelectricitypriceshastobeatleast15€/MWh,

beforeloadshiftingtakesplace.Foranaveragepersonalvehiclewithannualdrivingrangesof15.000–

20.000kmandelectricitydemandofaround3MWh/year,thiscorrespondsto45€/year.AllvehiclesFlexiblevehiclesMaximumflexiblevehicles21ReferenceFlexibilityonelectricvehiclesTheresultingmaximumcapacitytoincreasechargingorinterruptcharging(providingupregulationtothesystem)isshownontheright.Theseflexibilitiesarewellbelowtechnicalaccumulatedbatteryloadingandvolumeinthesystem,whichareupto18timeshigher.Flexibilityinchargingpatternsisusedindispatchoptimisationasillustrated,showingamoveawayfrompeakloadininitialchargingprofileattheexpenseofhigherpeaks.FlexNote:22oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.ChosenregionreflectsMunichinGermany.Season“S”

correspondtothereflectedweeknumber.ReferenceLimitsonflexibilityfromindividualheatingElectricityusedforheatingcanbeflexiblebyexploitingheatcapacityinbuildingsandhotwatertanks.Theinitialdemandprofilefollowstheheatdemand,whichisdependentonhotwaterusageandoutsidetemperature.Anincreasingshareofbuildingsareparticipatinginprovidingflexibilitytothesystembyallowingtheaverageseasonaldemandtobeshiftedbyupto2hours.Loadforbuildingsnotparticipatinginflexibleheatingwillhavetobeservedatalltimes.Maximumloadforindividualheatingcannotexceedmaximumannualpeakdemand,whichiswellbelowthetotalcumulativeinstalledtechnicalcapacityofheatpumps.FlexHeatdemandhastobesuppliedwithin24hoursandthuscannotbeshiftedacrossdays.Flexibilityisactivatedatacostof10€/MWh,

meaningthedifferencebetweenachievableelectricitypriceshastobeatleast10€/MWh,

beforeloadshiftingtakesplace.Note:23oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.ChosenregionreflectsMunichinGermany.Season“S”

correspondtothereflectedweeknumber.ModelResults25PowerGenerationCapacitiesPowergenerationcapacityOther3.500BatteriesSolar3.0002.5002.0001.5001.000500Twomainpatternscanbeidentifiedbetweenthedevelopedscenariosandthereferencecasewhenmovingto2050:OnshorewindOffshorewindHydroI.WhiletransitioningtoatotallyflexiblePtXoperationbehaviour(“PtX

Flex”),

batteryinvestments,whichaidthemodeltoshiftpowerfromcheapertimeslicestomoreexpensiveones,arereplacedbyhighersolarPVcapacitiesandH2storages.Theadditionalflexibilityinthehydrogensectorhelpsaveinvestmentsinbatteriesinthepowersector.UsingPVwithlowLCOE,hydrogenisstoredandutilisedacrosstimesegments.PumpedhydroBiogasBiomassWaste0CoalNuclear202520302050II.Whenaddingfurtherdemandsideflexibilitymeasurestothesystem,similarpatternsasin“PtX

Flex”

areobserved,approximatelyexaggeratedby50%,inparalleltoanadditionaldecreaseof93GWofgasand17GWofoffshorewindgenerators.Withtheopportunityofmoreflexibledemand,opportunitiesofreducingthecontributionofmoreexpensivemarginalgenerators(gaspeakers)orfurthermarginalinvestments(offshorewind)canbeharvested.Similar,butofsmallermagnitudeeffects,canbealsoobservedamongothercategoriesinearlieryears.DifferencetoReferenceOther200100BatteriesSolar0OnshorewindOffshorewindHydro-100-200-300-400-500PumpedhydroBiogasPtXFlexFlexibilityPtXFlexFlexibilityPtXFlexFlexibility202520302050BiomassWaste26CoalPowergenerationPowergenerationBatteriesSolar7.0006.0005.0004.0003.0002.0001.0000OnshorewindOffshorewindOtherObservinghighertotalelectricstoragecontributionstothepowermixevenduringloweroverallcapacitiessignalisethatthesystemstillfindsvalueinshiftingpoweracrosstimestepsbutwithlowerpeaksthatinthereference.HydroBiogasBiom

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論