版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東濟南市2025屆數(shù)學高一上期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.角終邊經(jīng)過點,那么()A. B.C. D.2.已知,,,則,,的大小關(guān)系為()A. B.C. D.3.已知集合,集合,則集合A. B.C. D.4.函數(shù)y=1+x+的部分圖象大致為()A. B.C. D.5.如果冪函數(shù)的圖象經(jīng)過點,則在定義域內(nèi)A.為增函數(shù) B.為減函數(shù)C.有最小值 D.有最大值6.函數(shù),的最小正周期是()A. B.C. D.7.在中,是的().A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知,則()A. B.C. D.9.是所在平面上的一點,滿足,若,則的面積為()A.2 B.3C.4 D.810.若,,則下列結(jié)論正確的是()A. B.C. D.a,b大小不確定二、填空題:本大題共6小題,每小題5分,共30分。11.在正三棱柱中,為棱的中點,若是面積為6的直角三角形,則此三棱柱的體積為__________12.函數(shù),若為偶函數(shù),則最小的正數(shù)的值為______13.已知函數(shù)是冪函數(shù),且在x∈(0,+∞)上遞減,則實數(shù)m=________14.已知函數(shù),的值域為,則實數(shù)的取值范圍為__________.15.已知,且,寫出一個滿足條件的的值___________16.已知實數(shù)滿足,則________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知一扇形的圓心角為,所在圓的半徑為.(1)若,求扇形的弧長及該弧所在的弓形的面積;(2)若扇形的周長是一定值,當為多少弧度時,該扇形有最大面積?18.已知二次函數(shù),且是函數(shù)的零點.(1)求解析式,并解不等式;(2)若,求函數(shù)的值域19.已知奇函數(shù)(a為常數(shù))(1)求a的值;(2)若函數(shù)有2個零點,求實數(shù)k的取值范圍;20.如圖,一個半徑為4米的筒車按逆時針方向每分鐘轉(zhuǎn)1圈,筒車的軸心O距水面的高度為2米.設(shè)筒車上的某個盛水筒W到水面的距離為d(單位:米)(在水面下則d為負數(shù)).若以盛水筒W剛浮出水面時開始計算時間,則d與時間t(單位:分鐘)之間的關(guān)系為.(1)求的值;(2)求盛水筒W出水后至少經(jīng)過多少時間就可到達最高點?(3)某時刻(單位:分鐘)時,盛水筒W在過O點的豎直直線的左側(cè),到水面的距離為5米,再經(jīng)過分鐘后,盛水筒W是否在水中?21.已知函數(shù)(1)當時,利用單調(diào)性定義證明在上是增函數(shù);(2)若存在,使,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用任意角的三角函數(shù)的定義,求得和的值,可得的值【詳解】解:角終邊上一點,,,則,故選:2、B【解析】通過計算可知,,,從而得出,,的大小關(guān)系.【詳解】解:因為,所以,,所以.故選:B.3、C【解析】故選C4、D【解析】由題意比較函數(shù)的性質(zhì)及函數(shù)圖象的特征,逐項判斷即可得解.【詳解】當x=1時,y=1+1+sin1=2+sin1>2,排除A、C;當x→+∞時,y→+∞,排除B.故選:D.【點睛】本題考查了函數(shù)圖象的識別,抓住函數(shù)圖象的差異是解題關(guān)鍵,屬于基礎(chǔ)題.5、C【解析】由冪函數(shù)的圖象經(jīng)過點,得到,由此能求出函數(shù)的單調(diào)性和最值【詳解】解:冪函數(shù)的圖象經(jīng)過點,,解得,,在遞減,在遞增,有最小值,無最大值故選【點睛】本題考查冪函數(shù)的概念和應(yīng)用,是基礎(chǔ)題.解題時要認真審題,仔細解答6、C【解析】利用正弦型函數(shù)周期公式直接計算作答.【詳解】函數(shù)的最小正周期.故選:C7、B【解析】根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進行判定,即可求解,得到答案.【詳解】在中,若,可得,滿足,即必要性成立;反之不一定成立,所以在中,是的必要不充分條件.故選B.【點睛】本題主要考查了充分條件和必要條件的判定,其中解答中熟練應(yīng)用三角函數(shù)的性質(zhì)是解答的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】先求出,再分子分母同除以余弦的平方,得到關(guān)于正切的關(guān)系式,代入求值.【詳解】由得,,所以故選:D9、A【解析】∵,∴,∴,且方向相同∴,∴.選A10、B【解析】根據(jù)作差比較法可得解.【詳解】解:因為,所以故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題,設(shè),截面是面積為6的直角三角形,則由得,又則故答案為12、【解析】根據(jù)三角函數(shù)的奇偶性知應(yīng)可用誘導公式化為余弦函數(shù)【詳解】,其為偶函數(shù),則,,,其中最小的正數(shù)為故答案【點睛】本題考查三角函數(shù)的奇偶性,解題時直接利用誘導公式分析即可13、2【解析】由冪函數(shù)的定義可得m2-m-1=1,得出m=2或m=-1,代入驗證即可.【詳解】是冪函數(shù),根據(jù)冪函數(shù)的定義和性質(zhì),得m2-m-1=1解得m=2或m=-1,當m=2時,f(x)=x-3在(0,+∞)上是減函數(shù),符合題意;當m=-1時,f(x)=x0=1在(0,+∞)上不是減函數(shù),所以m=2故答案為:2【點睛】本題考查了冪函數(shù)的定義,考查了理解辨析能力和計算能力,屬于基礎(chǔ)題目.14、##【解析】由題意,可令,將原函數(shù)變?yōu)槎魏瘮?shù),通過配方,得到對稱軸,再根據(jù)函數(shù)的定義域和值域確定實數(shù)需要滿足的關(guān)系,列式即可求解.【詳解】設(shè),則,∵,∴必須取到,∴,又時,,,∴,∴.故答案為:15、π(答案不唯一)【解析】利用,可得,又,確定可得結(jié)果.【詳解】因為,所以,,則,或,,又,故滿足要求故答案為:π(答案不唯一)16、4【解析】方程的根與方程的根可以轉(zhuǎn)化為函數(shù)與函數(shù)交點的橫坐標和函數(shù)與函數(shù)交點的橫坐標,再根據(jù)與互為反函數(shù),關(guān)于對稱,即可求出答案.【詳解】,,令,,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設(shè)為,如下圖所示;,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設(shè)為,如下圖所示,與互反函數(shù),關(guān)于對稱,聯(lián)立方程,解得,即,.故答案為:4.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】(1)根據(jù)弧長的公式和扇形的面積公式即可求扇形的弧長及該弧所在的弓形的面積;(2)根據(jù)扇形的面積公式,結(jié)合基本不等式即可得到結(jié)論【詳解】(1)設(shè)弧長為l,弓形面積為S弓,則α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周長C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.當且僅當α2=4,即α=2時,扇形面積有最大值.【點睛】本題主要考查扇形的弧長和扇形面積的計算,要求熟練掌握相應(yīng)的公式,考查學生的計算能力18、(1);;(2).【解析】(1)根據(jù)的零點求出,的值,得出函數(shù)的解析式,然后解二次不等式即可;(2)利用換元法,令,則,然后結(jié)合二次函數(shù)的圖象及性質(zhì)求出最值.【詳解】(1)由題意得,解得所以當時,即,.(2)令,則,,當時,有最小值,當時,有最大值,故.【點睛】本題考查二次函數(shù)的解析式求解、值域問題以及一元二次不等式的解法,較簡單.解答時只要抓住二次方程、二次函數(shù)、二次不等式之間的關(guān)系,則問題便可迎刃而解.19、(1)(2)【解析】(1)由奇函數(shù)中求解即可;(2)函數(shù)有2個零點,可轉(zhuǎn)為為也即函數(shù)與的圖象有兩個交點,結(jié)合圖象即可求解【小問1詳解】由是上的奇函數(shù),可得,所以,解得,經(jīng)檢驗滿足奇函數(shù),所以;【小問2詳解】函數(shù)有2個零點,可得方程函數(shù)有2個根,即有2個零點,也即函數(shù)與的圖象有兩個交點,由圖象可知所以實數(shù)得取值范圍是20、(1);(2)分鐘;(3)再經(jīng)過分鐘后盛水筒不在水中.【解析】(1)先結(jié)合題設(shè)條件得到,,求得,再利用初始值計算初相即可;(2)根據(jù)盛水筒達到最高點時,代入計算t值,再根據(jù),得到最少時間即可;(3)先計算時,根據(jù)題意,利用同角三角函數(shù)的平方關(guān)系求,再由分鐘后,進而計算d值并判斷正負,即得結(jié)果.【詳解】解:(1)由題意知,,即,所以,由題意半徑為4米,筒車的軸心O距水面的高度為2米,可得:,當時,,代入得,,因為,所以;(2)由(1)知:,盛水筒達到最高點時,,當時,,所以,所以,解得,因為,所以,當時,,所以盛水筒出水后至少經(jīng)過分鐘就可達到最高點;(3)由題知:,即,由題意,盛水筒W在過O點的豎直直線的左側(cè),知,所以,所以,所以,再經(jīng)過分鐘后,所以再經(jīng)過分鐘后盛水筒不在水中.【點睛】本題的解題關(guān)鍵在于準確求解出三角函數(shù)模型的解析式,才能利用三角函數(shù)性質(zhì)解決實際問題,突破難點.21、(1)證明見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 污水處理廠污泥濕式焚燒合同
- 企業(yè)員工關(guān)懷措施
- 智能導航網(wǎng)線鋪設(shè)協(xié)議
- 寫字樓玻璃隔斷安裝協(xié)議
- 分時度假租賃合同樣本
- 電商促銷季臨時工合同范本
- 修鞋師傅解除聘用合同模板
- 互聯(lián)網(wǎng)廣告合作協(xié)議辦法
- 通風工程小青瓦施工合同
- 國際健康中心檢查井施工合同
- 二手車簡易買賣合同范本(2024版)
- 礦漿管道施工組織設(shè)計
- 第六單元 寫作《表達要得體》公開課一等獎創(chuàng)新教案
- 犯罪學智慧樹知到期末考試答案章節(jié)答案2024年云南司法警官職業(yè)學院
- xxx軍分區(qū)安保服務(wù)項目技術(shù)方案文件
- 電感耦合等離子體發(fā)射光譜儀的維護和保養(yǎng)
- 2023年高二組重慶市高中學生化學競賽試題
- 2024-2030年中國新鮮果蔬行業(yè)市場發(fā)展分析及競爭策略與投資前景研究報告
- 物流配送合作協(xié)議書范本
- 機械制圖(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東華宇工學院
- 2024年海南省??谒闹懈呷?月份第一次模擬考試化學試卷含解析
評論
0/150
提交評論