版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.362.設(shè)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.43.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.84.中國大運河項目成功人選世界文化遺產(chǎn)名錄,成為中國第46個世界遺產(chǎn)項目,隨著對大運河的保護與開發(fā),大運河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團乘游船從奧體公園碼頭出發(fā)順流而下至漕運碼頭,又立即逆水返回奧體公園碼頭,已知游船在順水中的速度為,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.5.等差數(shù)列中,,,則()A.1 B.2C.3 D.46.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.87.已知拋物線C:的焦點為F,過點P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點,則()A. B.14C. D.158.已知直線和圓相交于兩點.若,則的值為()A. B.C. D.9.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.10.若函數(shù)有零點,則實數(shù)的取值范圍是()A. B.C. D.11.曲線的離心率為()A. B.C. D.12.若函數(shù)恰好有個不同的零點,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.14.已知數(shù)列的前項和為,則__________.15.已知數(shù)列的前n項和為,則______16.已知三個數(shù)2,,6成等比數(shù)列,則實數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求的極值;(2)當(dāng)時,,求a的取值范圍.18.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)證明:數(shù)列的前項和.19.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點在線段含端點上運動,當(dāng)點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.20.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.21.(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)的極值;(2)若存在,使不等式成立,求實數(shù)的取值范圍.22.(10分)已知拋物線C的方程為:,點(1)若直線與拋物線C相交于A、B兩點,且P為線段AB的中點,求直線的方程.(2)若直線過交拋物線C于M,N兩點,F(xiàn)為拋物線C的焦點,求的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.2、A【解析】由正弦定理求解即可.【詳解】因為,所以故選:A3、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.4、A【解析】求出平均速度V,進而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運公園碼頭到漕運碼頭之間的距離為1,則游船順流而下的時間為,逆流而上的時間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時,兩個不等式都取得“=”,而根據(jù)題意,于是.故選:A.5、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B6、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D7、C【解析】設(shè)A、B兩點的坐標分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡,進而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點坐標分別為,,直線的方程為,拋物線的準線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.8、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.9、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時取等號,故選:C.10、A【解析】設(shè),則函數(shù)有零點轉(zhuǎn)化為函數(shù)的圖象與直線有交點,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求出【詳解】設(shè),定義域為,則,易知為單調(diào)遞增函數(shù),且所以當(dāng)時,,遞減;當(dāng)時,,遞增,所以所以,即故選:A【點睛】本題主要考查根據(jù)函數(shù)有零點求參數(shù)的取值范圍,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題11、C【解析】由曲線方程直接求離心率即可.【詳解】由題設(shè),,,∴離心率.故選:C.12、D【解析】分析可知,直線與函數(shù)的圖象有個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時,即當(dāng)時,直線與函數(shù)的圖象有個交點,即函數(shù)有個零點.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】根據(jù)給定條件設(shè)出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:14、【解析】根據(jù)題意求得,得到,利用等差數(shù)列的求和公式,求得,結(jié)合裂項法求和法,即可求解.【詳解】由,可得,即,因為,所以,又因為,所以,可得,所以,所以.故答案為:.15、【解析】先通過裂項相消求出,再代入計算即可.【詳解】,則,故.故答案為:3.16、【解析】由題意可得,從而可求出的值【詳解】因為三個數(shù)2,,6成等比數(shù)列,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對進行分類討論,其中當(dāng)和時易判斷函數(shù)的單調(diào)性以及最小值,而當(dāng)時,的最小值與0進一步判斷【小問1詳解】當(dāng)時,的定義域為,.當(dāng)時,,當(dāng)時,,所以在上為增函數(shù),在上為減函數(shù).故有極大值,沒有極小值.【小問2詳解】當(dāng)時,恒成立等價于對于任意恒成立.令,則.若,則,所以在上單調(diào)遞減,所以,符合題意.若,所以在上單調(diào)遞減,,符合題意.若,當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,不合題意.綜上可知,a的取值范圍為.【點睛】關(guān)鍵點點睛:本題考查了不等式恒成立問題,其關(guān)鍵是構(gòu)造函數(shù),通過討論參數(shù)在不同取值范圍時函數(shù)的單調(diào)性,求出函數(shù)的最值,解出參數(shù)的范圍.必要時二次求導(dǎo).18、(1)(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得,即可證得原不等式成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.19、(1)證明見解析(2)點與點重合時,二面角的余弦值為【解析】(1)先利用平面幾何知識和余弦定理得到及各邊長度,利用線面平行的性質(zhì)和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標系,設(shè),寫出相關(guān)點的坐標,得到相關(guān)向量的坐標,利用平面的法向量夾角求出二面角的余弦值,再通過二次函數(shù)的最值進行求解.【小問1詳解】證明:在梯形中,因為,,又因為,所以,,所以,即,解得,,所以,即.因為平面,平面,所以,而平面平面,所以平面.因為,所以平面.【小問2詳解】解:分別以直線為軸,軸,軸建立如圖所示的空間直角坐標系(如圖所示),設(shè),則,所以,設(shè)為平面的一個法向量,由得,取,則,又是平面的一個法向量,設(shè)平面與平面所成銳二面角為,所以因為,所以當(dāng)時,有最小值為,所以點與點重合時,平面與平面所成二面角最大,此時二面角的余弦值為.20、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.21、(1)函數(shù)在上遞增,在上遞減,極大值為,無極小值(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的符號求得單調(diào)區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問題轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出函數(shù)的最大值即可得出答案.【小問1詳解】解:當(dāng)時,,則,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 溫泉租賃合同
- 長期車庫租賃協(xié)議
- 醫(yī)院特殊設(shè)備安裝工程合同樣本
- 音樂會停車位租賃協(xié)議
- 體育場館建設(shè)項目總承包合同
- 2025版股東間股權(quán)轉(zhuǎn)讓與利潤分配協(xié)議范本3篇
- 2025版智能防盜門代理銷售合同細則
- 審計局審計員聘用合同樣本
- 土地復(fù)墾綠化書
- 電子產(chǎn)品凈化系統(tǒng)建設(shè)合同
- 計算書-過濾器(纖維)
- 《有機波譜分析》期末考試試卷及參考答案
- 地源熱泵維修規(guī)程
- 雙塊式無砟軌道道床板裂紋成因分析應(yīng)對措施
- FZ∕T 62044-2021 抗菌清潔巾
- 凈水廠課程設(shè)計
- 全級老年大學(xué)星級學(xué)校達標評價細則
- 模具維護保養(yǎng)PPT課件
- 《新媒體文案寫作》試卷4
- 【模板】OTS認可表格
- 2021國家開放大學(xué)電大本科《流行病學(xué)》期末試題及答案
評論
0/150
提交評論