黑龍江省哈爾濱第九中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
黑龍江省哈爾濱第九中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
黑龍江省哈爾濱第九中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
黑龍江省哈爾濱第九中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
黑龍江省哈爾濱第九中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱第九中學2025屆高二上數(shù)學期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的導數(shù)為,且滿足,則()A. B.C. D.2.某市要對兩千多名出租車司機的年齡進行調(diào)查,現(xiàn)從中隨機抽出100名司機,已知抽到的司機年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲3.數(shù)列的一個通項公式為()A. B.C. D.4.已知,是圓上的兩點,是直線上一點,若存在點,,,使得,則實數(shù)的取值范圍是()A. B.C. D.5.已知各項都為正數(shù)的等比數(shù)列,其公比為q,前n項和為,滿足,且是與的等差中項,則下列選項正確的是()A. B.C D.6.()A. B.C. D.7.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.8.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.9.已知函數(shù),在上隨機取一個實數(shù),則使得成立的概率為()A. B.C. D.10.已知,為橢圓上關于短軸對稱的兩點,、分別為橢圓的上、下頂點,設,、分別為直線,的斜率,則的最小值為()A. B.C. D.11.函數(shù)的導函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.12.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在點處的切線方程是_________14.的展開式中的常數(shù)項為_______.15.執(zhí)行如圖所示的程序框圖,則輸出的S=__.16.設雙曲線的焦點為,點為上一點,,則為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知關于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時的值.18.(12分)某保險公司根據(jù)官方公布的歷年營業(yè)收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序號x12345678910營業(yè)收入y(億元)0.529.3633.6132352571912120716822135由表1,得到下面的散點圖:根據(jù)已有的函數(shù)知識,某同學選用二次函數(shù)模型(b和a是待定參數(shù))來擬合y和x的關系.這時,可以對年份序號做變換,即令,得,由表1可得變換后的數(shù)據(jù)見表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根據(jù)表中數(shù)據(jù),建立y關于t的回歸方程(系數(shù)精確到個位數(shù));(2)根據(jù)(1)中得到的回歸方程估計2021年的營業(yè)收入,以及營業(yè)收入首次超過4000億元的年份.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):.19.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點.(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.20.(12分)已知橢圓過點,且離心率,為坐標原點.(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點,直線與軸相交于點,且滿足,若存在,求出直線的方程;若不存在,請說明理由.21.(12分)已知命題p:方程的曲線是焦點在y軸上的雙曲線;命題q:方程無實根.若p或q為真,¬q為真,求實數(shù)m的取值范圍.22.(10分)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點,且∠BAD=,求∠ADC的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】首先求出,再令即可求解.【詳解】由,則,令,則,所以.故選:C【點睛】本題主要考查了基本初等函數(shù)的導數(shù)以及導數(shù)的基本運算法則,屬于基礎題.2、C【解析】先根據(jù)頻率分布直方圖中頻率之和為計算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設中位數(shù)為,則有,解得(歲),故選C【點睛】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計算,計算時要充分利用頻率分布直方圖中中位數(shù)的計算原理來計算,考查計算能力,屬于中等題3、A【解析】根據(jù)規(guī)律,總結(jié)通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A4、B【解析】確定在以為直徑的圓上,,根據(jù)均值不等式得到圓上的點到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設中點為,則,圓上的點到的最大距離為,,當時等號成立.直線到原點的距離為,故.故選:B.5、D【解析】根據(jù)題意求得,即可判斷AB,再根據(jù)等比數(shù)列的通項公式即可判斷C;再根據(jù)等比數(shù)列前項和公式即可判斷D.【詳解】解:因為各項都為正數(shù)的等比數(shù)列,,所以,又因是與的等差中項,所以,即,解得或(舍去),故B錯誤;所以,故A錯誤;所以,故C錯誤;所以,故D正確.故選:D.6、B【解析】根據(jù)微積分基本定理即可直接求出答案.【詳解】故選:B.7、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎題.8、B【解析】利用雙曲線的離心率,以及漸近線中,關系,結(jié)合找關系即可【詳解】解:,又因為在雙曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B9、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機取一實數(shù),則實數(shù)滿足不等式的概率為故選:B10、A【解析】設出點,的坐標,并表示出兩個斜率、,把代數(shù)式轉(zhuǎn)化成與點的坐標相關的代數(shù)式,再與橢圓有公共點解決即可.【詳解】橢圓中:,設則,則,,令,則它對應直線由整理得由判別式解得即,則的最小值為故選:A11、C【解析】構(gòu)造函數(shù),利用導數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)在上單調(diào)遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.12、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設為直線上任意一點,,切線長的最小值為:,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得函數(shù)的導數(shù),得到且,再結(jié)合直線的點斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點處切線方程是,即故答案為:.14、15【解析】先求出二項式展開式的通項公式,然后令的次數(shù)為0,求出的值,從而可得展開式中的常數(shù)項【詳解】二項式展開式的通項公式為,令,得,所以展開式中的常數(shù)項為故答案為:1515、【解析】該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,即可求解得答案【詳解】解:S=S+=S+,第一次循環(huán),S=1+1﹣,k=2;第二次循環(huán),S=1+1﹣,k=3;第三次循環(huán),S=1+1,k=4;第四次循環(huán),S=1,k=5;第五次循環(huán),S=1+1,k=6,循環(huán)停止,輸出;故答案為:.16、【解析】將方程化為雙曲線的標準方程,再利用雙曲線的定義進行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)利用根與系數(shù)的關系,得到等式和不等式,最后求出的值;(2)化簡函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【小問1詳解】由題意知:,解得【小問2詳解】由(1)知,∴,由對勾函數(shù)單調(diào)性知在上單調(diào)遞減,∴,即當,函數(shù)的最小值為18、(1);(2)估計2021年的營業(yè)收入約為2518億元,估計營業(yè)收入首次超過4000億元的年份為2025屆.【解析】(1)根據(jù)的公式,將題干中的數(shù)據(jù)代入,即得解;(2)代入,可估計2021年的營業(yè)收入;令,可求解的范圍,繼而得到的范圍,即得解【詳解】(1),,故回歸方程為.(2)2021年對應的t的值為121,營業(yè)收入,所以估計2021年的營業(yè)收入約為2518億元.依題意有,解得,故.因為,所以估計營業(yè)收入首次超過4000億元的年份序號為14,即2025屆.19、(1)證明見解析;(2)證明見解析;(3).【解析】建立空間直角坐標系,求出各點的坐標;(1)用向量的坐標運算證明向量共面,進而證明點共面;(2)利用向量的數(shù)量積的坐標運算證明,即可;(3)確定平面EFGHKL的一個法向量,利用空間角度的向量計算公式求得答案.【小問1詳解】證明:以D為原點,分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標系,不妨設正方體的棱長為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過同一點E,所以E,F(xiàn),G,H,K,L共面.【小問2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問3詳解】由(2)知,是平面EFGHKL的一個法向量,設與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.20、(1);(2)存在,方程為和.【解析】(1)根據(jù)橢圓上的點、離心率和關系可構(gòu)造方程求得,由此可得橢圓方程;(2)設,與橢圓方程聯(lián)立可得韋達定理形式,根據(jù)共線向量可得,代入韋達定理中可構(gòu)造關于的方程,解方程可求得,進而得到直線方程.【小問1詳解】由題意得:,解得:,橢圓的方程為;【小問2詳解】由題意知:直線斜率存在且不為零,可設,,,由得:,則;,,,,,解得:,,滿足條件的直線存在,方程為和.21、.【解析】計算命題p:;命題;根據(jù)p或q為真,¬q為真得到真假,計算得到答案.【詳解】若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論