2025屆黑龍江省哈爾濱市六校數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考試題含解析_第1頁(yè)
2025屆黑龍江省哈爾濱市六校數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考試題含解析_第2頁(yè)
2025屆黑龍江省哈爾濱市六校數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考試題含解析_第3頁(yè)
2025屆黑龍江省哈爾濱市六校數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考試題含解析_第4頁(yè)
2025屆黑龍江省哈爾濱市六校數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆黑龍江省哈爾濱市六校數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的右焦點(diǎn)為,過(guò)原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長(zhǎng)交右支于點(diǎn),若,則雙曲線的離心率是()A. B. C. D.2.已知復(fù)數(shù)滿足,則()A. B. C. D.3.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.4.的展開(kāi)式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.1805.復(fù)數(shù)滿足,則()A. B. C. D.6.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或77.的展開(kāi)式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-28.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.9.下列不等式成立的是()A. B. C. D.10.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.11.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-112.體育教師指導(dǎo)4個(gè)學(xué)生訓(xùn)練轉(zhuǎn)身動(dòng)作,預(yù)備時(shí),4個(gè)學(xué)生全部面朝正南方向站成一排.訓(xùn)練時(shí),每次都讓3個(gè)學(xué)生“向后轉(zhuǎn)”,若4個(gè)學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi)_____.14.已知三棱錐的四個(gè)頂點(diǎn)都在球O的球面上,,,,,E,F(xiàn)分別為,的中點(diǎn),,則球O的體積為_(kāi)_____.15.若實(shí)數(shù),滿足,則的最小值為_(kāi)_________.16.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)若數(shù)列前n項(xiàng)和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.19.(12分)已知直線與橢圓恰有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn).(I)求與的關(guān)系式;(II)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.若當(dāng)時(shí),的面積取到最大值,求橢圓的離心率.20.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.21.(12分)某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過(guò)度的部分按元/度收費(fèi),超過(guò)度但不超過(guò)度的部分按元/度收費(fèi),超過(guò)度的部分按元/度收費(fèi).(I)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過(guò)抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費(fèi)用不超過(guò)元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.22.(10分)已知橢圓經(jīng)過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),若,在線段上取點(diǎn),使,求證:點(diǎn)在定直線上.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,,根據(jù)對(duì)稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.2、A【解析】

根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.3、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、D【解析】

求的展開(kāi)式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開(kāi)式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開(kāi)式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開(kāi)式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.5、C【解析】

利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.7、C【解析】

利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開(kāi)式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.8、A【解析】

若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫(huà)出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過(guò)點(diǎn),分別畫(huà)出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問(wèn)題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.9、D【解析】

根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問(wèn)題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.10、B【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.11、B【解析】

由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.12、B【解析】

通過(guò)列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類(lèi)題型構(gòu)造較為巧妙,可通過(guò)列舉的方法直觀感受,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-8【解析】

通過(guò)約束條件,畫(huà)出可行域,將問(wèn)題轉(zhuǎn)化為直線在軸截距最大的問(wèn)題,通過(guò)圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過(guò)時(shí),在軸截距最大本題正確結(jié)果:【點(diǎn)睛】本題考查線性規(guī)劃中的型最值的求解問(wèn)題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問(wèn)題.14、【解析】

可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計(jì)算可得.【詳解】解:,,,因?yàn)闉榈闹悬c(diǎn),所以為的外心,因?yàn)?,所以點(diǎn)在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【點(diǎn)睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計(jì)算能力,屬于中檔題.15、【解析】

由約束條件先畫(huà)出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫(huà)出可行域,如圖所示,由,即,當(dāng)平行線經(jīng)過(guò)點(diǎn)時(shí)取到最小值,由可得,此時(shí),所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線性規(guī)劃的知識(shí),解題的一般步驟為先畫(huà)出可行域,然后改寫(xiě)目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.16、【解析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點(diǎn)睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)詳見(jiàn)解析;(2).【解析】

(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問(wèn)題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯(cuò)點(diǎn)是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號(hào)出現(xiàn)錯(cuò)誤.18、(1)(2)詳見(jiàn)解析【解析】

(1)利用可得的遞推關(guān)系,從而可求其通項(xiàng).(2)由為等比數(shù)列可得,從而可得的通項(xiàng),利用錯(cuò)位相減法可得的前項(xiàng)和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當(dāng)時(shí),得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡(jiǎn)得到,所以或(舍).所以,,則.設(shè)的前n項(xiàng)和為.則,相減可得【點(diǎn)睛】數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系式,我們常利用這個(gè)關(guān)系式實(shí)現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項(xiàng)的結(jié)構(gòu)形式,如果通項(xiàng)是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項(xiàng)是等差數(shù)列與等比數(shù)列的乘積,則用錯(cuò)位相減法;如果通項(xiàng)可以拆成一個(gè)數(shù)列連續(xù)兩項(xiàng)的差,那么用裂項(xiàng)相消法;如果通項(xiàng)的符號(hào)有規(guī)律的出現(xiàn),則用并項(xiàng)求和法.19、(Ⅰ)(II)【解析】

(I)聯(lián)立直線與橢圓的方程,根據(jù)判別式等于0,即可求出結(jié)果;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,可得的面積是的面積的兩倍,再由當(dāng)時(shí),的面積取到最大值,可得,進(jìn)而可得原點(diǎn)到直線的距離,再由點(diǎn)到直線的距離公式,以及(I)的結(jié)果,即可求解.【詳解】(I)由,得,則化簡(jiǎn)整理,得;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,故的面積是的面積的兩倍.所以當(dāng)時(shí),的面積取到最大值,此時(shí),從而原點(diǎn)到直線的距離,又,故.再由(I),得,則.又,故,即,從而,即.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系,以及橢圓的簡(jiǎn)單性質(zhì),通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理、判別式等求解,屬于中檔試題.20、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進(jìn)而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因?yàn)椋?,由正弦定理,得.又因?yàn)?,,所以.又因?yàn)?,所以.(II)由,得,由余弦定理,得,即,因?yàn)?,解?因?yàn)?,所?21、(1);(2),;(3)見(jiàn)解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關(guān)于的方程,即可得;(3)取每段中點(diǎn)值作為代表的用電量,分別算出對(duì)應(yīng)的費(fèi)用值,對(duì)應(yīng)得出每組電費(fèi)的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),,所以與之間的函數(shù)解析式為.(2)由(1)可知,當(dāng)時(shí),,則,結(jié)合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,故的概率分布列為25751402203104100.10.20.3

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論