廣西桂林、賀州、崇左三市2025屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁
廣西桂林、賀州、崇左三市2025屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁
廣西桂林、賀州、崇左三市2025屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁
廣西桂林、賀州、崇左三市2025屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁
廣西桂林、賀州、崇左三市2025屆數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西桂林、賀州、崇左三市2025屆數(shù)學(xué)高二上期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.與直線平行,且經(jīng)過點(2,3)的直線的方程為()A. B.C. D.2.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.163.已知圓的方程為,直線:恒過定點,若一條光線從點射出,經(jīng)直線上一點反射后到達(dá)圓上的一點,則的最小值是()A.3 B.4C.5 D.64.若連續(xù)拋擲兩次骰子得到的點數(shù)分別為m,n,則點P(m,n)在直線x+y=4上的概率是()A. B.C. D.5.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.86.已知集合A=()A. B.C.或 D.7.在一個正方體中,為正方形四邊上的動點,為底面正方形的中心,分別為中點,點為平面內(nèi)一點,線段與互相平分,則滿足的實數(shù)的值有A.0個 B.1個C.2個 D.3個8.已知圓與圓沒有公共點,則實數(shù)a的取值范圍為()A. B.C. D.9.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標(biāo)原點的距離等于()A.7 B.10C.12 D.1410.設(shè)為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定11.已知直線在兩個坐標(biāo)軸上的截距之和為7,則實數(shù)m的值為()A.2 B.3C.4 D.512.直線的傾斜角為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線,則切線的方程為________14.已知橢圓的離心率為.(1)證明:;(2)若點在橢圓的內(nèi)部,過點的直線交橢圓于、兩點,為線段的中點,且.①求直線的方程;②求橢圓的標(biāo)準(zhǔn)方程.15.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___16.在等比數(shù)列中,已知,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一款小游戲的規(guī)則如下:每盤游戲都需拋擲骰子三次,出現(xiàn)一次或兩次“6點”獲得15分,出現(xiàn)三次“6點”獲得120分,沒有出現(xiàn)“6點”則扣除12分(即獲得-12分)(Ⅰ)設(shè)每盤游戲中出現(xiàn)“6點”的次數(shù)為X,求X的分布列;(Ⅱ)玩兩盤游戲,求兩盤中至少有一盤獲得15分概率;(Ⅲ)玩過這款游戲的許多人發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析解釋上述現(xiàn)象18.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點O為圓心的圓與直線相切.(1)求圓O的方程;(2)設(shè)圓O交x軸于A,B兩點,點P在圓O內(nèi),且是、的等比中項,求的取值范圍.19.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.20.(12分)某高校在今年的自主招生考試成績中隨機(jī)抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?(3)在(2)的前提下,從抽到6名學(xué)生中再隨機(jī)抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.21.(12分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當(dāng)為何值時,最大,并求的最大值.22.(10分)阿基米德(公元前287年---公元前212年,古希臘)不僅是著名的哲學(xué)家、物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.在平面直角坐標(biāo)系中,橢圓的面積等于,且橢圓的焦距為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)點是軸上的定點,直線與橢圓交于不同的兩點,已知A關(guān)于軸的對稱點為,點關(guān)于原點的對稱點為,已知三點共線,試探究直線是否過定點.若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由直線平行及直線所過的點,應(yīng)用點斜式寫出直線方程即可.【詳解】與直線平行,且經(jīng)過點(2,3)的直線的方程為,整理得故選:C2、C【解析】根據(jù)“中國剩余定理”,進(jìn)而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.3、B【解析】求得定點,然后得到關(guān)于直線對稱點為,然后可得,計算即可.【詳解】直線可化為,令解得所以點的坐標(biāo)為.設(shè)點關(guān)于直線的對稱點為,則由,解得,所以點坐標(biāo)為.由線段垂直平分線的性質(zhì)可知,,所以(當(dāng)且僅當(dāng),,,四點共線時等號成立),所以的最小值為4.故選:B.4、D【解析】利用分布計數(shù)原理求出所有的基本事件個數(shù),在求出點落在直線x+y=4上包含的基本事件個數(shù),利用古典概型的概率個數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個結(jié)果出現(xiàn)的機(jī)會都是等可能的,點P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個,所以點P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點:古典概型點評:本題考查先判斷出各個結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題5、B【解析】根據(jù)橢圓短軸長的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,所以該橢圓的短軸長為,故選:B6、A【解析】先求出集合,再根據(jù)集合的交集運算,即可求出結(jié)果.【詳解】因為集合,所以.故選:A.7、C【解析】因為線段D1Q與OP互相平分,所以四點O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時,Q一定在線段ON上運動,只有當(dāng)P為C1D1的中點時,Q與點M重合,此時λ=1,符合題意若P在線段C1B1與線段B1A1上時,在平面ABCD找不到符合條件Q;在P在線段D1A1上時,點Q在直線OM上運動,只有當(dāng)P為線段D1A1的中點時,點Q與點M重合,此時λ=0符合題意,所以符合條件的λ值有兩個故選C.8、B【解析】求出圓、的圓心和半徑,再由兩圓沒有公共點列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒有公共點,則有或,即或,又,解得或,所以實數(shù)a的取值范圍為.故選:B9、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標(biāo)原點的距離.【詳解】因為橢圓,,所以,結(jié)合得,,取的中點,連接,所以為的中位線,所以.故選:A.10、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因為過點作于,可得,所以,故選:A.11、C【解析】求出直線方程在兩坐標(biāo)軸上的截距,列出方程,求出實數(shù)m的值.【詳解】當(dāng)時,,故不合題意,故,,令得:,令得:,故,解得:.故選:C12、C【解析】設(shè)直線傾斜角為,則,再結(jié)合直線的斜率與傾斜角的關(guān)系求解即可.【詳解】設(shè)直線的傾斜角為,則,∵,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知可得點M在圓C上,則過M作圓的切線與CM所在的直線垂直,求出斜率,進(jìn)而可得直線方程.【詳解】由圓得到圓心C的坐標(biāo)為(0,

0),圓的半徑,而所以點M在圓C上,則過M作圓的切線與CM所在的直線垂直,又,得到CM所在直線的斜率為,所以切線的斜率為,則切線方程為:即故答案為:.14、(1)證明見解析;(2)①;②.【解析】(1)由可證得結(jié)論成立;(2)①設(shè)點、,利用點差法可求得直線的斜率,利用點斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,利用平面向量數(shù)量積的坐標(biāo)運算可得出關(guān)于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當(dāng)在橢圓的內(nèi)部時,,可得.設(shè)點、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達(dá)定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.15、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:16、32【解析】根據(jù)已知求出公比即可求出答案.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以.故答案為:32.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)分布列見解析(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)先得到可能的取值為,,,,根據(jù)每次拋擲骰子,出現(xiàn)“6點”的概率為,得到每種取值的概率,得到分布列;(Ⅱ)計算出每盤游戲沒有獲得15分的概率,從而得到兩盤中至少有一盤獲得15分的概率;(Ⅲ)設(shè)每盤游戲得分為,得到的分布列和數(shù)學(xué)期望,從而得到結(jié)論.【詳解】解:(Ⅰ)可能的取值為,,,.每次拋擲骰子,出現(xiàn)“6點”的概率為.,,,,所以X的分布列為:0123(Ⅱ)設(shè)每盤游戲沒有得到15分為事件,則.設(shè)“兩盤游戲中至少有一次獲得15分”為事件,則因此,玩兩盤游戲至少有一次獲得15分的概率為.(Ⅲ)設(shè)每盤游戲得分為.由(Ⅰ)知,的分布列為:Y-1215120P的數(shù)學(xué)期望為.這表明,獲得分?jǐn)?shù)的期望為負(fù)因此,多次游戲之后分?jǐn)?shù)減少的可能性更大【點睛】本題考查求隨機(jī)變量的分布列和數(shù)學(xué)期望,求互斥事件的概率,屬于中檔題.18、(1);(2).【解析】(1)根據(jù)題意設(shè)出圓方程,結(jié)合該圓與直線相切,求得半徑,則問題得解;(2)設(shè)出點的坐標(biāo)為,根據(jù)題意,求得的等量關(guān)系,再構(gòu)造關(guān)于的函數(shù)關(guān)系,求得函數(shù)值域即可.【小問1詳解】根據(jù)題意,設(shè)的方程為,又該圓與直線相切,故可得,則圓的方程為.【小問2詳解】對圓:,令,則,不妨設(shè),則,設(shè)點,因為點在圓內(nèi),故;因為是、的等比中項,故可得:,則,整理得;由可得,解得,則.故答案為:.19、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當(dāng)直線l的斜率存在時,設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達(dá)定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時,當(dāng)直線l的斜率不存在時,由對稱性不妨令,,,當(dāng)時,,即當(dāng)時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值20、(1),,(2)第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學(xué)生第三組應(yīng)抽3人,第四組應(yīng)抽2人,第五組應(yīng)抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結(jié)合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機(jī)抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.21、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因為.所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論