版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市第二十七中學2025屆高二數(shù)學第一學期期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的前n項和為,若,,則()A.250 B.210C.160 D.902.已知等差數(shù)列的前項和為,且,,則()A.3 B.5C.6 D.103.已知矩形,為平面外一點,且平面,,分別為,上的點,且,,,則()A. B.C.1 D.4.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.命題“,”否定是()A., B.,C., D.,6.在空間直角坐標系下,點關于軸對稱的點的坐標為()A. B.C. D.7.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.8.已知a,b為不相等實數(shù),記,則M與N的大小關系為()A. B.C. D.不確定9.已知數(shù)列的前n項和為,,,則()A. B.C. D.10.在四棱錐中,四邊形為菱形,平面,是中點,下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面11.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.1612.在數(shù)列中抽取部分項(按原來的順序)構成一個新數(shù)列,記為,再在數(shù)列插入適當?shù)捻?,使它們一起能構成一個首項為1,公比為3的等比數(shù)列.若,則數(shù)列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.820二、填空題:本題共4小題,每小題5分,共20分。13.定義在上的函數(shù)滿足:有成立且,則不等式的解集為__________14.我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案.通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖,則a=______________15.在梯形中,,,.將梯形繞所在的直線旋轉一周而形成的曲面所圍成的幾何體的體積為______.16.某射箭運動員在一次射箭訓練中射靶10次,命中環(huán)數(shù)如下:8,9,8,10,6,7,9,10,8,5,則命中環(huán)數(shù)的平均數(shù)為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面底面ABCD,,,,,(1)證明:是直角三角形;(2)求平面PCD與平面PAB的夾角的余弦值18.(12分)求適合條件的橢圓的標準方程.(1)長軸長是短軸長的2倍,且過點;(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且焦距為6.19.(12分)已知等差數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式及;(2)設,求數(shù)列的前n項和.20.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點C到平面BEF的距離21.(12分)如圖,已知橢圓的短軸端點為、,且,橢圓C的離心率,點,過點P的動直線l橢圓C交于不同的兩點M、N與,均不重合),連接,,交于點T(1)求橢圓C的方程;(2)求證:當直線l繞點P旋轉時,點T總在一條定直線上運動;(3)是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請說明理由22.(10分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設為等比數(shù)列,由此利用等比數(shù)列的前項和為能求出結果【詳解】設,等比數(shù)列的前項和為為等比數(shù)列,為等比數(shù)列,解得故選:B2、B【解析】根據(jù)等差數(shù)列的性質,以及等差數(shù)列的前項和公式,由題中條件,即可得出結果.【詳解】因為數(shù)列為等差數(shù)列,由,可得,,則.故選:B.【點睛】本題主要考查等差數(shù)列的性質,以及等差數(shù)列前項和的基本量運算,屬于基礎題型.3、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因為,,所以所以,因為,所以,所以,故選:B4、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項可知:焦距相等.故選:D.5、D【解析】根據(jù)含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.6、C【解析】由空間中關于坐標軸對稱點坐標的特征可直接得到結果.【詳解】關于軸對稱的點的坐標不變,坐標變?yōu)橄喾磾?shù),關于軸對稱的點為.故選:C.7、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關系即可求解.【詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.8、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因為,又,所以,即故選:A9、D【解析】根據(jù)給定遞推公式求出即可計算作答.【詳解】因數(shù)列的前n項和為,,,則,,,所以.故選:D10、D【解析】利用反證法可判斷A選項;利用面面垂直的性質可判斷BC選項;利用面面垂直的判定可判斷D選項.【詳解】對于A選項,因為四邊形為菱形,則,平面,平面,平面,若平面,因為,則平面平面,事實上,平面與平面相交,假設不成立,A錯;對于B選項,過點在平面內(nèi)作,垂足為點,平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯;對于C選項,過點在平面內(nèi)作,垂足為點,因為平面,平面,則,,,則平面,若平面平面,過點在平面內(nèi)作,垂足為點,因為平面平面,平面平面,平面,平面,而過點作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯;對于D選項,因為四邊形為菱形,則,平面,平面,,,平面,因為平面,因此,平面平面平面,D對.故選:D.11、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A12、C【解析】先根據(jù)等比數(shù)列的通項公式得到,列出數(shù)列的前6項,將其中是數(shù)列的項的所有數(shù)去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項,3、27、243不是數(shù)列的項,且,所以數(shù)列中第7項前(不含)插入的項的和最小為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,判斷出函數(shù)的單調性,利用單調性解即可【詳解】設,又有成立,函數(shù),即是上的增函數(shù),,即,,故答案為:14、3##【解析】由頻率之和等于1,即矩形面積之和為1可得.【詳解】由題知,解得.故答案為:0.315、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:16、【解析】直接利用求平均數(shù)的公式即可求解.【詳解】由已知得數(shù)據(jù)的平均數(shù)為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接BD,在四邊形ABCD中求得,在中,取得,得到,由線面垂直的性質證得平面,得到,再由線面垂直的判定定理,證得平面PBD,進而得到,即可證得是直角三角形(2)以為原點,以所在直線為x軸,過點且與平行直線為y軸,所在直線為z軸,建立的空間直角坐標系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解.【小問1詳解】證明:如圖所示,連接BD,因為四邊形中,可得,,,所以,,則在中,由余弦定理可得,所以,所以因為平面底面,平面底面,底面ABCD,所以平面PAB,因為平面PAB,所以,因為,,所以平面PBD因為平面PBD,所以,即是直角三角形【小問2詳解】解:由(1)知平面PAB,取AB的中點O,連接PO,因為,所以,因為平面,平面底面,平面底面,所以底面,以為原點,以所在直線為x軸,過點且與平行的直線為y軸,所在直線為z軸,建立如圖所示的空間直角坐標系,設,則,,,,,可得,,,設平面的一個法向量為,則,令,可得,,所以,因為是平面的一個法向量,所以,即平面與平面的夾角的余弦值為18、(1)或(2)【解析】(1)待定系數(shù)法去求橢圓的標準方程即可;(2)待定系數(shù)法去求橢圓的標準方程即可.【小問1詳解】當橢圓焦點在x軸上時,方程可設為,將點代入得,解之得,則所求橢圓方程為當橢圓焦點在y軸上時,方程可設為,將點代入得,解之得,則所求橢圓方程為【小問2詳解】橢圓方程可設為,則,解之得,則橢圓方程為19、(1)(2)【解析】(1)設等差數(shù)列的公差為,根據(jù)已知條件可得出關于、的方程組,解出這兩個量的值,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式,利用等差數(shù)列前n項和公式求出;(2)求得,利用裂項相消法即可求得.【小問1詳解】設等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項公式,;【小問2詳解】由(1)可得,所以,所以.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,進而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進而求得答案.【小問1詳解】因為DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因為ABCD是正方形,所以DA⊥DC.以D為坐標原點,所在方向分別為軸的正方向建立空間直角坐標系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設平面BEF的法向量,因為,所以-2x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因為=(-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小問2詳解】設點C到平面BEF的距離為d,而,所以,所以點C到平面BEF的距離為21、(1)(2)證明見解析;(3)不存在直線l,使得成立,理由見解析.【解析】(1)根據(jù)題意,列出方程組,求得,即可求得橢圓的方程;(2)設直線的方程為,聯(lián)立方程組求得,設,根據(jù)和在同一條直線上,列出方程求得的值,即可求解;(3)設直線的為,把轉化為,聯(lián)立方程組求得,代入列方程,求得,即可得到結論.【小問1詳解】解:由題意可得,解得,所以所求橢圓的方程為.【小問2詳解】解:由題意,因為直線過點,可設直線的方程為,,聯(lián)立方程組,整理得,可得,因為直線與橢圓有兩個交點,所以,解得,設,因為在同一條直線上,則,①又由在同一條直線上,則,②由①+②3所以,整理得,解得,所以點在直線,即當直線l繞點P旋轉時,點T總在一條定直線上運動.【小問3詳解】解:由(2)知,點在直線上運動,即,設直線的方程為,且,又由且,可得,即,聯(lián)立方程組,整理得,可得,代入可得,解得,即,此時直線的斜率不存在,不合題意,所以不存在直線l,使得成立.22、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關系可構造方程求得,由此可得橢圓方程;(2)當直線斜率不存在時,表示出兩點坐標,由兩點連線斜率公式表示出,整理可得直線為;當直線斜率存在時,設,與橢圓方程聯(lián)立可得韋達定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當直線斜率不存在時,設直線方程為,則,則,,解得:,直線方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源儲能設施建設與租賃合同4篇
- 2025年度新能源汽車充電樁電工安裝與運營合同4篇
- 2025年度數(shù)據(jù)中心建設承包技師服務協(xié)議3篇
- 2025年度油氣儲罐環(huán)保改造項目合同范本4篇
- 2024版聯(lián)合開發(fā)合同(新能源技術)
- 2025年版產(chǎn)業(yè)園區(qū)招商引資代理服務合同6篇
- 2025年度快遞收派服務外包管理合同4篇
- 2025年度個人房地產(chǎn)投資融資委托服務協(xié)議4篇
- 2025年度行政效能監(jiān)察合作協(xié)議書2篇
- 2025年榆林神木精益化工有限公司招聘筆試參考題庫含答案解析
- 常見老年慢性病防治與護理課件整理
- 履約情況證明(共6篇)
- 云南省迪慶藏族自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 設備機房出入登記表
- 六年級語文-文言文閱讀訓練題50篇-含答案
- 醫(yī)用冰箱溫度登記表
- 零售學(第二版)第01章零售導論
- 大學植物生理學經(jīng)典05植物光合作用
- 口袋妖怪白金光圖文攻略2周目
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數(shù)據(jù)標準
- 三年級下冊生字組詞(帶拼音)
評論
0/150
提交評論