福建省龍巖市龍巖一中2025屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
福建省龍巖市龍巖一中2025屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
福建省龍巖市龍巖一中2025屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
福建省龍巖市龍巖一中2025屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
福建省龍巖市龍巖一中2025屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

福建省龍巖市龍巖一中2025屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.2.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.23.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.4.已知集合,,則的真子集個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.己知集合,,則()A. B. C. D.6.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.37.點(diǎn)為的三條中線的交點(diǎn),且,,則的值為()A. B. C. D.8.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或9.已知函數(shù),當(dāng)時(shí),恒成立,則的取值范圍為()A. B. C. D.10.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.11.若的展開式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.12.“角谷猜想”的內(nèi)容是:對于任意一個(gè)大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數(shù),且,的最小值為________.14.如圖所示的流程圖中,輸出的值為______.15.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.16.已知點(diǎn)是直線上的一點(diǎn),將直線繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角,所得直線方程是,若將它繼續(xù)旋轉(zhuǎn)角,所得直線方程是,則直線的方程是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個(gè)二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級濾芯每個(gè)160元,二級濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個(gè)400元,二級濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個(gè)一級過濾器更換濾芯的頻率代替1個(gè)一級過濾器更換濾芯發(fā)生的概率,以200個(gè)二級過濾器更換濾芯的頻率代替1個(gè)二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級濾芯和二級濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.18.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.19.(12分)已知數(shù)列的通項(xiàng),數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.21.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.22.(10分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問題,屬于中檔題.2、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.3、B【解析】

奇函數(shù)滿足定義域關(guān)于原點(diǎn)對稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)椋圆豢赡軙r(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對稱,且滿足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對稱,且,滿足奇函數(shù),在上很明顯存在變號零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對稱,屬于簡單題目.4、C【解析】

求出的元素,再確定其真子集個(gè)數(shù).【詳解】由,解得或,∴中有兩個(gè)元素,因此它的真子集有3個(gè).故選:C.【點(diǎn)睛】本題考查集合的子集個(gè)數(shù)問題,解題時(shí)可先確定交集中集合的元素個(gè)數(shù),解題關(guān)鍵是對集合元素的認(rèn)識,本題中集合都是曲線上的點(diǎn)集.5、C【解析】

先化簡,再求.【詳解】因?yàn)椋忠驗(yàn)?,所以,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.6、D【解析】

畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時(shí),邊界線的虛實(shí)問題.7、B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,,.故選:B【點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.8、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.9、A【解析】

分析可得,顯然在上恒成立,只需討論時(shí)的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價(jià)于,進(jìn)而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當(dāng)時(shí),等價(jià)于,因?yàn)?所以.設(shè),由,顯然在上單調(diào)遞增,因?yàn)?所以等價(jià)于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點(diǎn)睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.10、C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.11、C【解析】展開式的通項(xiàng)為,因?yàn)檎归_式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).12、B【解析】

模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時(shí):,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時(shí)可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng),即、時(shí)取等號,故答案為:.【點(diǎn)睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時(shí)候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.14、4【解析】

根據(jù)流程圖依次運(yùn)行直到,結(jié)束循環(huán),輸出n,得出結(jié)果.【詳解】由題:,,,結(jié)束循環(huán),輸出.故答案為:4【點(diǎn)睛】此題考查根據(jù)程序框圖運(yùn)行結(jié)果求輸出值,關(guān)鍵在于準(zhǔn)確識別循環(huán)結(jié)構(gòu)和判斷框語句.15、,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點(diǎn)睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.16、【解析】

求出點(diǎn)坐標(biāo),由于直線與直線垂直,得出直線的斜率為,再由點(diǎn)斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角,再繼續(xù)旋轉(zhuǎn)角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點(diǎn)睛】本題主要考查了求直線的方程,涉及了求直線的交點(diǎn)以及直線與直線的位置關(guān)系,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個(gè)二級過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用(單位:元)因?yàn)?,且?°若,則,(元);2°若,則,(元).因?yàn)椋蔬x擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買一級濾芯和二級濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購買的各級濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.18、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】

(1)當(dāng)a=2時(shí),求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個(gè)零點(diǎn)等價(jià)于a=2x在上有兩解,構(gòu)造函數(shù),,利用導(dǎo)數(shù),可分析求得實(shí)數(shù)a的取值范圍.【詳解】(1)當(dāng)a=2時(shí),定義域?yàn)椋瑒t,令,解得x1,或x1(舍去),所以當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設(shè),函數(shù)g(x)在上有兩個(gè)零點(diǎn)等價(jià)于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當(dāng)時(shí),有,即,當(dāng)時(shí),有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時(shí),取得極小值,也是最小值,即,由方程在上有兩解及,可得實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價(jià)轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.19、(1);(2).【解析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進(jìn)行賦值計(jì)算出的首項(xiàng)和公比,即可求解出的通項(xiàng)公式;(2)的通項(xiàng)公式符合等差乘以等比的形式,采用錯(cuò)位相減法進(jìn)行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設(shè)數(shù)列的公比為,,,解得(2),,,,.【點(diǎn)睛】本題考查等差、等比數(shù)列的綜合以及錯(cuò)位相減法求和的應(yīng)用,難度一般.判斷是否適合使用錯(cuò)位相減法,可根據(jù)數(shù)列的通項(xiàng)公式是否符合等差乘以等比的形式來判斷.20、(1)見解析;(2)見解析【解析】

(1)求得的導(dǎo)函數(shù),對分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達(dá)定理求得的關(guān)系式,利用差比較法,計(jì)算,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進(jìn)而證得不等式成立.【詳解】(1).當(dāng)時(shí),,此時(shí)在上單調(diào)遞減;當(dāng)時(shí),由解得或,∵是增函數(shù),∴此時(shí)在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1)見解析(2)【解析】

(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論