黑龍江省賓縣第一中學(xué)校2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
黑龍江省賓縣第一中學(xué)校2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
黑龍江省賓縣第一中學(xué)校2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
黑龍江省賓縣第一中學(xué)校2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
黑龍江省賓縣第一中學(xué)校2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省賓縣第一中學(xué)校2025屆高二上數(shù)學(xué)期末綜合測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,,M,N分別是,的中點(diǎn),,則AN與BM所成角的余弦值為()A. B.C. D.2.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來的一半,則點(diǎn)的對應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點(diǎn)的對應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.3.記等比數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.274.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.15.已知拋物線x2=4y上有一條長為6的動弦AB,則AB的中點(diǎn)到x軸的最短距離為()A. B.C.1 D.26.直線且的傾斜角為()A. B.C. D.7.若直線與平行,則實(shí)數(shù)m等于()A.1 B.C.4 D.08.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列9.已知點(diǎn)是雙曲線的左、右焦點(diǎn),以線段為直徑的圓與雙曲線在第一象限的交點(diǎn)為,若,則()A.與雙曲線的實(shí)軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線10.已知O為坐標(biāo)原點(diǎn),=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動,則當(dāng)取得最小值時,點(diǎn)Q的坐標(biāo)為()A. B.C. D.11.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,高爾頓釘板是一個關(guān)于概率的模型,每一黑點(diǎn)表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時,將隨機(jī)的向兩邊等概率的落下.當(dāng)有大量的小球都落下時,最終在釘板下面不同位置收集到小球.現(xiàn)有5個小球從正上方落下,則恰有3個小球落到2號位置的概率是______14.如圖所示,二面角為,是棱上的兩點(diǎn),分別在半平面內(nèi),且,,,,,則的長______15.設(shè)為三角形的一個內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)16.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個球,第二層有3個球,第三層有6個球…….設(shè)各層球數(shù)構(gòu)成一個數(shù)列,其中,,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖像在處的切線斜率為,且時,有極值.(1)求的解析式;(2)求在上的最大值和最小值.18.(12分)設(shè)等差數(shù)列的各項均為整數(shù),且滿足對任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項公式為,數(shù)列是否具有性質(zhì)?并說明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對于給定的,具有性質(zhì)的數(shù)列是有限個,還是可以無窮多個?(直接寫出結(jié)論)19.(12分)已知等比數(shù)列{}的各項均為正數(shù),,,成等差數(shù)列,,數(shù)列{}的前n項和,且.(1)求{}和{}的通項公式;(2)設(shè),記數(shù)列{}的前n項和為.求證:.20.(12分)等比數(shù)列的各項均為正數(shù),且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列前項和.21.(12分)已知函數(shù)(1)當(dāng)在處取得極值時,求函數(shù)的解析式;(2)當(dāng)?shù)臉O大值不小于時,求的取值范圍22.(10分)圓心為的圓經(jīng)過點(diǎn),,且圓心在上,(1)求圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作直線交圓于且,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】構(gòu)建空間直角坐標(biāo)系,根據(jù)已知條件求AN與BM對應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標(biāo)表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標(biāo)系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D2、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.3、C【解析】根據(jù)等比數(shù)列的性質(zhì),可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項性質(zhì)即可求出結(jié)果.【詳解】因?yàn)闉榈缺葦?shù)列的前項和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C4、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應(yīng)的即可.【詳解】由題意知,因?yàn)?,若為奇?shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A5、D【解析】由題意知,拋物線的準(zhǔn)線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設(shè)弦AB的中點(diǎn)為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點(diǎn)),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.6、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.7、B【解析】兩直線平行的充要條件【詳解】由于,則,.故選:B8、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點(diǎn)睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運(yùn)算求解能力,考查函數(shù)與方程思想,屬于中檔題.9、B【解析】由題意及雙曲線的定義可得,的值,進(jìn)而可得A不正確,計算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進(jìn)而求出漸近線的方程,可得D不正確【詳解】因?yàn)?,又由題意及雙曲線的定義可得:,則,,所以A不正確;因?yàn)樵谝詾橹睆降膱A上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B10、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時,取得最小值,從而求得點(diǎn)的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時,取得最小值,此時==,即點(diǎn)Q的坐標(biāo)為.故選:C11、A【解析】對函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時,,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時,,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.12、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點(diǎn)睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先研究一個小球從正上方落下的情況,從而可求出一個小球從正上方落下落到2號位置的概率,進(jìn)而可求出5個小球從正上方落下,則恰有3個小球落到2號位置的概率【詳解】如圖所示,先研究一個小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號位置的有4種,所以每個球落入2號位置的概率為,所以5個小球從正上方落下,則恰有3個小球落到2號位置的概率為,故答案為:14、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點(diǎn),分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點(diǎn)睛】本題主要考查空間向量的運(yùn)算法則以及數(shù)量積的運(yùn)算法則,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,是中檔題15、焦點(diǎn)在軸上的橢圓,焦點(diǎn)在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進(jìn)而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點(diǎn)在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點(diǎn)在x軸上的雙曲線.故答案為:焦點(diǎn)在y軸上橢圓,焦點(diǎn)在x軸上的雙曲線,兩條直線.16、15【解析】由分析可知每次小球數(shù)量剛好是等差數(shù)列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,最小值為.【解析】(1)由題得①,②,解方程組即得解;(2)令解得或,再列表得解.【小問1詳解】解:求導(dǎo)得,因?yàn)樵诔龅那芯€斜率為,則,即①因?yàn)闀r,有極值,則.即②由①②聯(lián)立得,所以.【小問2詳解】解:由(1),令解得或,列表如下:極大值極小值所以,在[-3,2]上的最大值為,最小值為.18、(1)數(shù)列具有性質(zhì),理由見解析;(2),;(3)有限個.【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個數(shù)是否有限.【小問1詳解】由,對任意正整數(shù),,說明仍為數(shù)列中的項,∴數(shù)列具有性質(zhì).【小問2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時對任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項.易知:可取,對應(yīng)得到個滿足條件的等差數(shù)列.【小問3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個,∴具有性質(zhì)的數(shù)列是有限個.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)性質(zhì)的定義,在第2、3問中判斷滿足等差數(shù)列通項公式,結(jié)合各項均為整數(shù),判斷公差的個數(shù)是否有限即可.19、(1)(2)證明見解析【解析】設(shè)等比數(shù)列的公比為,由,,成等差數(shù)列,解得.由,利用通項公式解得,可得.由數(shù)列的前項和,且,時,,化簡整理即可得出;(2),利用裂項求和方法、數(shù)列的單調(diào)性即可證明結(jié)論【小問1詳解】設(shè)等比數(shù)列的公比為,,,成等差數(shù)列,,即,化為:,解得,,即,解得,數(shù)列的前項和,且,時,,化為:,,數(shù)列是每項都為1的常數(shù)列,,化為【小問2詳解】證明:,數(shù)列的前項和為,20、(1);(2).【解析】(1)根據(jù)題意求出首項和公比即可得出通項公式;(2)可得是等差數(shù)列,利用等差數(shù)列前n項和公式即可求出.【詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由題意得,解得,因此,;(2),則,所以,數(shù)列是等差數(shù)列,首項,記數(shù)列前項和為,則.21、(1);(2).【解析】(1)對函數(shù)求導(dǎo),根據(jù)求出m,并驗(yàn)證此時函數(shù)在x=1處取得極值,進(jìn)而求得答案;(2)對函數(shù)求導(dǎo),進(jìn)而求出函數(shù)的單調(diào)區(qū)間和極大值,然后求出m的范圍.【小問1詳解】因?yàn)?,所?因?yàn)樵谔幦〉脴O值,所以,所以,此時,時,,單調(diào)遞減,時,,單調(diào)遞增,即在處取得極小值,故.【小問2詳解】,令,解得.時,,單調(diào)遞增,時,,單調(diào)遞減,時,,單調(diào)遞增.,即的取值范圍是.22、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論