北京市陳經綸學校2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題含解析_第1頁
北京市陳經綸學校2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題含解析_第2頁
北京市陳經綸學校2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題含解析_第3頁
北京市陳經綸學校2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題含解析_第4頁
北京市陳經綸學校2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市陳經綸學校2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對于函數(shù),下列說法正確的是A.函數(shù)圖象關于點對稱B.函數(shù)圖象關于直線對稱C.將它的圖象向左平移個單位,得到的圖象D.將它的圖象上各點的橫坐標縮小為原來的倍,得到的圖象2.已知,則化為()A. B.C.m D.13.與終邊相同的角是A. B.C. D.4.函數(shù)在區(qū)間上的最小值是A. B.0C. D.25.函數(shù)是上的偶函數(shù),則的值是A. B.C. D.6.已知集合,則()A. B.C. D.7.在平面直角坐標系中,直線的斜率是()A. B.C. D.8.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.9.函數(shù)(其中為自然對數(shù)的底數(shù))的圖象大致為()A. B.C. D.10.是邊AB上的中點,記,,則向量A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________12.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________13.如圖,在中,,以為圓心、為半徑作圓弧交于點.若圓弧等分的面積,且弧度,則=________.14.在三棱錐中,,,,則三棱錐的外接球的表面積為________.15.給出下列四個結論:①函數(shù)是奇函數(shù);②將函數(shù)的圖象向右平移個單位長度,可以得到函數(shù)的圖象;③若是第一象限角且,則;④已知函數(shù),其中是正整數(shù).若對任意實數(shù)都有,則的最小值是4其中所有正確結論的序號是________16.經過點,且在軸上的截距等于在軸上的截距的2倍的直線的方程是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若函數(shù)為奇函數(shù),求實數(shù)的值;(2)判斷函數(shù)在定義域上的單調性,并用單調性定義加以證明;(3)若函數(shù)為奇函數(shù),求滿足不等式的實數(shù)的取值范圍.18.如圖,在平面直角坐標系中,角的頂點與原點重合,始邊與軸的非負半軸重合,終邊與單位圓交于點,(1)求的值;(2)將射線繞坐標原點按逆時針方向旋轉后與單位圓交于點,求的值;(3)若點與關于軸對稱,求的值.19.設(1)分別求(2)若,求實數(shù)的取值范圍20.已知函數(shù).(1)求f(x)的定義域及單調區(qū)間;(2)求f(x)的最大值,并求出取得最大值時x的值;(3)設函數(shù),若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實數(shù)a的取值范圍.21.求函數(shù)的定義域,并指出它的單調性及單調區(qū)間

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】,所以點不是對稱中心,對稱中心需要滿足整體角等于,,A錯.,所以直線是對稱軸,對稱軸需要滿足整體角等于,,B對.將函數(shù)向左平移個單位,得到的圖像,C錯.將它的圖像上各點的橫坐標縮小為原來的倍,得到的圖像,D錯,選B.(1)對于和來說,對稱中心與零點相聯(lián)系,對稱軸與最值點聯(lián)系.的圖象有無窮多條對稱軸,可由方程解出;它還有無窮多個對稱中心,它們是圖象與軸的交點,可由,解得,即其對稱中心為(2)三角函數(shù)圖像平移:路徑①:先向左(φ>0)或向右(φ<0)平移個單位長度,得到函數(shù)y=sin(x+φ)的圖象;然后使曲線上各點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁(橫坐標不變),這時的曲線就是y=Asin(ωx+φ)的圖象路徑②:先將曲線上各點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)y=sinωx的圖象;然后把曲線向左(φ>0)或向右(φ<0)平移個單位長度,得到函數(shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁倍(橫坐標不變),這時的曲線就是y=Asin(ωx+φ)的圖象2、C【解析】把根式化為分數(shù)指數(shù)冪進行運算【詳解】,.故選:C3、D【解析】與終邊相同的角是.當1時,故選D4、A【解析】函數(shù),可得的對稱軸為,利用單調性可得結果【詳解】函數(shù),其對稱軸為,在區(qū)間內部,因為拋物線的圖象開口向上,所以當時,在區(qū)間上取得最小值,其最小值為,故選A【點睛】本題考查二次函數(shù)的最值,注意分析的對稱軸,屬于基礎題.若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關鍵在于正確化成完全平方式,并且一定要先確定其定義域.5、C【解析】分析:由奇偶性可得,化為,從而可得結果.詳解:∵是上的偶函數(shù),則,即,即成立,∴,又∵,∴.故選C點睛:本題主要考查函數(shù)的奇偶性,屬于中檔題.已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性.6、C【解析】根據并集的定義計算【詳解】由題意故選:C7、A【解析】將直線轉化成斜截式方程,即得得出斜率.【詳解】解:由題得,原式可化為,斜率.故選:A.8、D【解析】根據函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎題型.9、A【解析】由為偶函數(shù),排除選項B、D,又,排除選項C,從而即可得答案.【詳解】解:令,因為,且定義域為,所以為偶函數(shù),所以排除選項B、D;又,所以排除選項C;故選:A.10、C【解析】由題意得,∴.選C二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:212、-1【解析】由已知得,所以則,故答案.13、【解析】設扇形的半徑為,則扇形的面積為,直角三角形中,,,面積為,由題意得,∴,∴,故答案為.點睛:本題考查扇形的面積公式及三角形的面積公式的應用,考查學生的計算能力,屬于基礎題;設出扇形的半徑,求出扇形的面積,再在直角三角形中求出高,計算直角三角形的面積,由條件建立等式,解此等式求出與的關系,即可得出結論.14、【解析】構造長方體,使得面上的對角線長分別為4,5,,則長方體的對角線長等于三棱錐P-ABC外接球的直徑,即可求出三棱錐P-ABC外接球的表面積【詳解】∵三棱錐P?ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴構造長方體,使得面上的對角線長分別為4,5,,則長方體的對角線長等于三棱錐P?ABC外接球的直徑.設長方體的棱長分別為x,y,z,則,∴三棱錐P?ABC外接球的直徑為,∴三棱錐P?ABC外接球的表面積為.故答案為:26π.【點睛】本題主要考查三棱錐外接球表面積的求法,屬于難題.要求外接球的表面積和體積,關鍵是求出球的半徑,求外接球半徑的常見方法有:①若三條棱兩垂直則用(為三棱的長);②若面(),則(為外接圓半徑);③可以轉化為長方體的外接球;④特殊幾何體可以直接找出球心和半徑.15、①②④【解析】直接利用奇函數(shù)的定義,函數(shù)圖象的平移變換,象限角,三角函數(shù)的恒等變換以及余弦函數(shù)圖像的性質即可判斷.【詳解】對于①,其中,即為奇函數(shù),則①正確;對于②將的圖象向右平移個單位長度,即,則②正確;對于③若令,,則,則③不正確;對于④,由題意可知,任意一個長為的開區(qū)間上至少包含函數(shù)的一個周期,的周期為,則,即,則的最小值是4,則④正確;故答案為:①②④.16、或【解析】設所求直線方程為,將點代入上式可得或.考點:直線的方程三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)函數(shù)在上單調遞減,證明見解析(3)【解析】(1)利用奇函數(shù)的定義可得的值;(2)利用單調性定義證明即可;(3)根據的奇偶性和單調性可得的取值范圍.【小問1詳解】函數(shù)的定義域為,因為為奇函數(shù),所以,所以,所以,所以.【小問2詳解】函數(shù)在上單調遞減.下面用單調性定義證明:任取,且,則因為在上單調遞增,且,所以,又,所以,所以函數(shù)在上單調遞減.【小問3詳解】因為為奇函數(shù),所以,由得,即,由(2)可知,函數(shù)在上單調遞減,所以,即,解得或,所以的取值范圍為.18、(1)(2)(3)【解析】(1)由三角函數(shù)的定義得到,再根據且點在第一象限,即可求出;(2)依題意可得,再由(1),即可得解;(3)首先求出的坐標,連接交軸于點,即可得到,再利用二倍角公式計算可得;【小問1詳解】解:因為角終邊與單位圓交于點,且,由三角函數(shù)定義,得.因為,所以.因為點在第一象限,所以.【小問2詳解】解:因為射線繞坐標原點按逆時針方向旋轉后與單位圓交于點,所以.因為,所以.【小問3詳解】解:因為點與關于軸對稱,所以點的坐標是.連接交軸于點,所以.所以.所以的值是.19、(1);或(2)【解析】(1)解不等式,直接計算集合的交集并集與補集;(2)根據集合間的計算結果判斷集合間關系,進而確定參數(shù)取值范圍.【小問1詳解】解:解不等式可得,,所以,或,或;【小問2詳解】解:由可得,且,所以,解得,即.20、(1)定義域為(﹣1,3);f(x)的單調增區(qū)間為(﹣1,1],f(x)的單調減區(qū)間為[1,3);(2)當x=1時,函數(shù)f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用對數(shù)的真數(shù)大于零即可求得定義域,根據復合函數(shù)的單調性“同增異減”即可求得單調區(qū)間;(2)根據函數(shù)的單調性即可求解;(3)將f(x)≤g(x)轉化為x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,結合基本不等式即可求解.【詳解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定義域為(﹣1,3),令t=2x+3﹣x2,則,∵為增函數(shù),x∈(﹣1,1]時,t=2x+3﹣x2為增函數(shù);x∈[1,3)時,t=2x+3﹣x2為減函數(shù);故f(x)的單調增區(qū)間為(﹣1,1];f(x)的單調減區(qū)間為[1,3)(2)由(1)知當x=1時,t=2x+3﹣x2取最大值4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論