




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省福州市第四中學2025屆高二數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增B.函數(shù)上有兩個零點C.函數(shù)有極大值16D.函數(shù)有最小值2.已知曲線與直線總有公共點,則m的取值范圍是()A. B.C. D.3.直線過橢圓內(nèi)一點,若點為弦的中點,設為直線的斜率,為直線的斜率,則的值為()A. B.C. D.4.變量,之間的一組相關數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.5.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.6.拋物線的焦點到準線的距離是A. B.1C. D.7.已知是拋物線:的焦點,直線與拋物線相交于,兩點,滿足,記線段的中點到拋物線的準線的距離為,則的最大值為()A. B.C. D.8.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-29.已知某班有學生48人,為了解該班學生視力情況,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學生在樣本中,則樣本中另外一個學生的編號是()A.26 B.27C.28 D.2910.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或11.某班新學期開學統(tǒng)計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.12.已知,,則在上的投影向量為()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.兩條平行直線與的距離是__________14.在等差數(shù)列中,,那么等于______.15.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員,面向全社會的優(yōu)質(zhì)平臺,現(xiàn)日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門APP,某市宣傳部門為了解全民利用“學習強國”了解國家動態(tài)的情況,從全市抽取2000名人員進行調(diào)查,統(tǒng)計他們每周利用“學習強國”的時長,下圖是根據(jù)調(diào)查結(jié)果繪制的頻率分布直方圖(1)根據(jù)上圖,求所有被抽查人員利用“學習強國”的平均時長和中位數(shù);(2)宣傳部為了了解大家利用“學習強國”的具體情況,準備采用分層抽樣的方法從和組中抽取50人了解情況,則兩組各抽取多少人?再利用分層抽樣從抽取的50入中選5人參加一個座談會,現(xiàn)從參加座談會的5人中隨機抽取兩人發(fā)言,求小組中至少有1人發(fā)言的概率?16.已知向量,,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓:的左頂點為,右頂點為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標準方程;(2)設過點的直線與橢圓交于點,且點在第一象限,點關于軸對稱點為點,直線與直線交于點,若直線斜率大于,求直線的斜率的取值范圍.18.(12分)某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):單價x(元)88.28.48.68.89銷量y(件)908483807568(1)求回歸直線方程中的實數(shù);(2)根據(jù)回歸方程預測當單價為10元時的銷量.19.(12分)在平面直角坐標系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關系,并證明你的結(jié)論20.(12分)兩個頂點、的坐標分別是、,邊、所在直線的斜率之積等于,頂點的軌跡記為.(1)求頂點的軌跡的方程;(2)若過點作直線與軌跡相交于、兩點,點恰為弦中點,求直線的方程;(3)已知點為軌跡的下頂點,若動點在軌跡上,求的最大值.21.(12分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,這三個條件中任選一個作為已知條件,然后解答問題在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知______________(1)求角A的大小;(2)若a=2,且△ABC的面積為2,求b+c22.(10分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對求導,研究的單調(diào)性以及極值,再結(jié)合選項即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個零點,且無最小值.故選:C2、D【解析】對曲線化簡可知曲線表示以點為圓心,2為半徑的圓的下半部分,對直線方程化簡可得直線過定點,畫出圖形,由圖可知,,然后求出直線的斜率即可【詳解】由,得,因為,所以曲線表示以點為圓心,2為半徑的圓的下半部分,由,得,所以,得,所以直線過定點,如圖所示設曲線與軸的兩個交點分別為,直線過定點,為曲線上一動點,根據(jù)圖可知,若曲線與直線總有公共點,則,得,設直線為,則,解得,或,所以,所以,所以,故選:D3、A【解析】設點與的坐標,進而可表示與,再結(jié)合兩點在橢圓上,可得的值.【詳解】設點與,則,,所以,,又點與在橢圓上,所以,,作差可得,即,所以,故選:A.4、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.5、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.6、D【解析】,,所以拋物線的焦點到其準線的距離是,故選D.7、C【解析】設,過點,分別作拋物線的準線的垂線,垂足分別為,進而得,再結(jié)合余弦定理得,進而根據(jù)基本不等式求解得.【詳解】解:設,過點,分別作拋物線的準線的垂線,垂足分別為,則,因為點為線段中點,所以根據(jù)梯形中位線定理得點到拋物線的準線的距離為,因為,所以在中,由余弦定理得,所以,又因為,所以,當且僅當時等號成立,所以,故.所以的最大值為.故選:C【點睛】本題考查拋物線的定義,直線與拋物線的位置關系,余弦定理,基本不等式,考查運算求解能力,是中檔題.本題解題的關鍵在于根據(jù)題意,設,進而結(jié)合拋物線的定于與余弦定理得,,再求最值.8、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎題.9、B【解析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學生來自第三組,設其編號為,則,進而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學生來自第三組,設其編號為,則,所以,故選:B【點睛】本題考查系統(tǒng)抽樣的編號,屬于基礎題10、A【解析】根據(jù)等比中項的性質(zhì)和等差數(shù)列的通項公式建立方程,可解得公差d得選項.【詳解】解:因為在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.11、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D12、C【解析】根據(jù)題意得,進而根據(jù)投影向量的概念求解即可.【詳解】解:因為,,所以,所以,所以在上的投影向量為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:514、14【解析】根據(jù)等差數(shù)列的性質(zhì)得到,求得,再由,即可求解.【詳解】因為數(shù)列為等差數(shù)列,且,根據(jù)等差數(shù)列的性質(zhì),可得,解答,又由.故答案為:14.15、(1)平均時長為,中位數(shù)為(2)在和兩組中分別抽取30人和20人,概率【解析】(1)由頻率分布直方圖計算平均數(shù),中位數(shù)的公式即可求解;(2)先根據(jù)分層抽樣求出每一組抽取的人數(shù),再列舉抽取總事件個數(shù),從而利用古典概型概率計算公式即可求解【小問1詳解】解:(1)設被抽查人員利用“學習強國”的平均時長為,中位數(shù)為,,被抽查人員利用“學習強國”的時長中位數(shù)滿足,解得,即抽查人員利用“學習強國”的平均時長為6.8,中位數(shù)為【小問2詳解】解:組的人數(shù)為人,設抽取的人數(shù)為,組的人數(shù)為人,設抽取的人數(shù)為,則,解得,,所以在和兩組中分別抽取30人和20人,再利用分層抽樣從抽取的50入中抽取5人,兩組分別抽取3人和2人,將組中被抽取的工作人員標記為,,,將中的標記為,,則抽取的情況如下:,,,,,,,,,,,,,,,,,,,共10種情況,其中在中至少抽取1人有7種,故所求概率16、【解析】根據(jù)向量平行求得,由此求得.【詳解】由于,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)直線被圓截得的弦長為,由解得,再由離心率結(jié)合求解。(2)設,則,得到直線:;直線:,聯(lián)立求得,再根據(jù)線斜率大于,求得,然后由求解.【詳解】(1)以線段為直徑的圓的圓心為:,半徑,圓心到直線的距離,直線被圓截得的弦長為,解得:,又橢圓離心率,∴,,橢圓的標準方程為:.(2)設,其中,,則,∴,,則直線為:;直線為:,由得:,∴,∴,∴,令,,則,∴,∵∴,∴,即.【點睛】本題主要考查橢圓方程和幾何性質(zhì)以及直線與圓,橢圓的位置關系的應用,還考查了運算求解的能力,屬于中檔題.18、(1)250.(2)50(件).【解析】(1)數(shù)據(jù)的平均值一定在回歸直線上;(2)將x=10代入回歸方程即可.【小問1詳解】由表中數(shù)據(jù)可得,,,代入,解得.【小問2詳解】由(1)得,故單價為10元時,.當單價為10元時銷量為50件.19、(1)橢圓,(2),證明見解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設直線的方程為,,,聯(lián)立橢圓方程,寫出韋達定理;由中點公式求出點,進而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長公式可求,可轉(zhuǎn)化為,結(jié)合韋達定理可化簡,進而得證.【小問1詳解】設,,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進行證明:設直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標為,直線方程為,由方程組,得,,所以又所以.20、(1)(2)(3)【解析】(1)先表示出邊、所在直線的斜率,然后根據(jù)兩條直線的斜率關系建立方程即可;(2)聯(lián)立直線與橢圓方程,利用韋達定理和中點坐標公式即可求出直線的斜率;(3)先表示出,然后利用橢圓的性質(zhì),進而確定的最大值.【小問1詳解】設點,則由可得:化簡得:故頂點的軌跡的方程:【小問2詳解】當直線的斜率不存在時,顯然不符合題意;當直線的斜率存在時,設直線的方程為聯(lián)立方程組消去可得:設直線與軌跡的交點,的坐標分別為由韋達定理得:點為、兩點的中點,可得:,即則有:解得:故求直線的方程為:【小問3詳解】由(1)可知,設則有:又點滿足,即由橢圓的性質(zhì)得:所以當時,21、(1)(2)【解析】(1)選①:化邊為角化簡求出cos;選②:利用倍角公式將sin()=?1+2sin2化簡為sin=?cos,再利用輔助角公式求解即可;選③:化邊為角化簡運算求解(2)利用面積公式求得,再利用余弦定理可得,計算即可.【小問1詳解】選①∵∴sincos=sinCcos+sincosC=sin(+C)=sin∴cos∵∈,∴=選②∵sin()=?1+2sin2,∴sin=?cos∴sin(+A)=1∵A∈∴A=選③∵∴∴∵A∈,∴A=【小問2詳解】∵,∴又∵∴即22、(1)極大值為,無極小值(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電商平臺與移動支付的融合發(fā)展
- 設備地基施工合同范本
- 2025至2030年中國紫外玻璃濾光片數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國電感電容萬用表數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國滑板匙扣數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國汽車雨刮片數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國氣動Ⅴ型切割機數(shù)據(jù)監(jiān)測研究報告
- 永川物流合同范本
- 中醫(yī)護理評估與四診-中醫(yī)望診
- 營運車轉(zhuǎn)賣合同范本
- 湖北省武漢市江漢區(qū)2023-2024學年七年級下學期期末數(shù)學試題
- (完整版)初級茶藝師理論知識300題含答案【完整版】
- 四肢創(chuàng)傷影像(X線)診斷
- DL-T5153-2014火力發(fā)電廠廠用電設計技術規(guī)程
- (高清版)JTGT 3365-02-2020 公路涵洞設計規(guī)范
- DZ∕T 0223-2011 礦山地質(zhì)環(huán)境保護與恢復治理方案編制規(guī)范(正式版)
- 2024年湖南有色金屬職業(yè)技術學院單招職業(yè)適應性測試題庫學生專用
- 醫(yī)院營養(yǎng)食堂餐飲服務投標方案(技術方案)
- 醫(yī)院培訓課件:《分級護理制度解讀》
- 學生宿舍安全應急疏散預案
- 北師大版數(shù)學四年級下冊第2單元 認識三角形和四邊形 大單元整體教學設計
評論
0/150
提交評論