版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省揚州市邗江區(qū)三校數(shù)學(xué)高一上期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)集合,,則A. B.C. D.2.設(shè)函數(shù)滿足,的零點為,則下列選項中一定錯誤的是()A. B.C. D.3.規(guī)定從甲地到乙地通話min的電話費由(元)決定,其中>0,[]是大于或等于的最小整數(shù),如[2]=2,[2.7]=3,[2.1]=3,則從甲地到乙地通話時間為4.5min的電話費為()元A.4.8 B.5.2C.5.6 D.64.下列函數(shù)為奇函數(shù)的是A. B.C. D.5.已知函數(shù)是定義在上的偶函數(shù),對任意,都有,當(dāng)時,,則A. B.C.1 D.6.設(shè)全集,集合,,則等于A. B.{4}C.{2,4} D.{2,4,6}7.已知點A(2,0)和點B(﹣4,2),則|AB|=()A. B.2C. D.28.最小正周期為,且在區(qū)間上單調(diào)遞增的函數(shù)是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=9.中國5G技術(shù)領(lǐng)先世界,5G技術(shù)的數(shù)學(xué)原理之一便是著名的香農(nóng)公式:.它表示:在受噪聲干擾的信道中,最大信息傳遞速度C取決于信道帶寬W,信道內(nèi)信號的平均功率S,信道內(nèi)部的高斯噪聲功率N的大小,其中叫做信噪比.當(dāng)信噪比較大時,公式中真數(shù)中的1可以忽略不計.按照香農(nóng)公式,若不改變帶寬W,而將信噪比從1000提升至8000,則C大約增加了()()A.10% B.30%C.60% D.90%10.直線l:ax+y﹣3a=0與曲線y有兩個公共點,則實數(shù)a的取值范圍是A.[,] B.(0,)C.[0,) D.(,0)二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是______12.計算______.13.____________14.已知各頂點都在一個球面上的正四棱柱高為4,體積為16,則這個球的表面積是________.15.已知直線與圓相切,則的值為________16.已知在上的最大值和最小值分別為和,則的最小值為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是定義在上的偶函數(shù),當(dāng)時,.(1)求在時的解析式;(2)若,在上恒成立,求實數(shù)的取值范圍.18.已知函數(shù),其圖像過點,相鄰兩條對稱軸之間的距離為(1)求函數(shù)的解析式;(2)將函數(shù)的圖像上每一點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)保持不變,得到函數(shù)的圖像,若方程在上有兩個不相等的實數(shù)解,求實數(shù)m的取值范圍19.已知二次函數(shù)滿足對任意,都有;;的圖象與軸的兩個交點之間的距離為.(1)求的解析式;(2)記,(i)若為單調(diào)函數(shù),求的取值范圍;(ii)記的最小值為,若方程有兩個不等的根,求的取值范圍.20.(1)求值:;(2)求值:;(3)已知,求的值21.已知函數(shù)求的最小正周期及其單調(diào)遞增區(qū)間;若,求的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】詳解】試題分析:集合,集合,所以,故選D.考點:1、一元二次不等式;2、集合的運算.2、C【解析】根據(jù)函數(shù)的解析式,結(jié)合零點的存在定理,進(jìn)行分類討論判定,即可求解.【詳解】由題意,函數(shù)的定義域為,且的零點為,即,解得,又因為,可得中,有1個負(fù)數(shù)、兩個正數(shù),或3個都負(fù)數(shù),若中,有1個負(fù)數(shù)、兩個正數(shù),可得,即,根據(jù)零點的存在定理,可得或;若中,3個都是負(fù)數(shù),則滿足,即,此時函數(shù)的零點.故選:C.3、C【解析】計算,代入函數(shù),計算即得結(jié)果.【詳解】由,得.故選:C.4、D【解析】函數(shù)是非奇非偶函數(shù);和是偶函數(shù);是奇函數(shù),故選D考點:函數(shù)的奇偶性5、C【解析】由題意,故選C6、C【解析】由并集與補集的概念運算【詳解】故選:C7、D【解析】由平面兩點的距離公式計算可得所求值.【詳解】由點A(2,0)和點B(﹣4,2),所以故選:D【點睛】本題考查平面上兩點間的距離,直接用平面上兩點間的距離公式解決,屬于基礎(chǔ)題.8、B【解析】選項、先利用輔助角公式恒等變形,再利用正弦函數(shù)圖像的性質(zhì)判斷周期和單調(diào)遞增區(qū)間即可,選項先利用二倍角的正弦公式恒等變形,再利用正弦函數(shù)圖像的性質(zhì)判斷周期和單調(diào)遞增區(qū)間即可,選項直接利用正切函數(shù)圖象的性質(zhì)去判斷即可.【詳解】對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上單調(diào)遞增,則選項錯誤;對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上為單調(diào)遞增,則選項正確;對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上為單調(diào)遞增,則選項錯誤;對于選項,,最小正周期為,在為單調(diào)遞增,則選項錯誤;故選:.9、B【解析】根據(jù)所給公式、及對數(shù)的運算法則代入計算可得;【詳解】解:當(dāng)時,,當(dāng)時,,∴,∴約增加了30%.故選:B10、C【解析】根據(jù)直線的點斜式方程可得直線過定點,曲線表示以為圓心,1為半徑的半圓,作出圖形,利用數(shù)形結(jié)合思想求出兩個極限位置的斜率,即可得解.【詳解】直線,即斜率為且過定點,曲線為以為圓心,1為半徑的半圓,如圖所示,當(dāng)直線與半圓相切,為切點時(此時直線的傾斜角為鈍角),圓心到直線的距離,,解得,當(dāng)直線過原點時斜率,即,則直線與半圓有兩個公共點時,實數(shù)的取值范圍為:[0,),故選:C【點睛】本題主要考查圓的方程與性質(zhì),直線與圓的位置關(guān)系,考查了數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)指數(shù)函數(shù)與二次函數(shù)的單調(diào)性,以及復(fù)合函數(shù)的單調(diào)性的判定方法,求得在上單調(diào)遞增,在區(qū)間上單調(diào)遞減,再結(jié)合題意,即可求解.【詳解】令,可得拋物線的開口向上,且對稱軸為,所以函數(shù)在上單調(diào)遞減,在區(qū)間上單調(diào)遞增,又由函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)在上單調(diào)遞增,在區(qū)間上單調(diào)遞減,因為函數(shù)在上單調(diào)遞減,則,可得實數(shù)的取值范圍是.故答案:.12、7【解析】根據(jù)對數(shù)與指數(shù)的運算性質(zhì)計算即可得解.【詳解】解:.故答案為:7.13、【解析】,故答案為.考點:對數(shù)的運算.14、【解析】正四棱柱的高是4,體積是16,則底面邊長為2,底面正方形的對角線長度為,所以正四棱柱體對角線的長度為,四棱柱體對角線為外接球的直徑,所以球的半徑為,所以球的表面積為考點:正四棱柱外接球表面積15、2【解析】直線與圓相切,圓心到直線的距離等于半徑,列出方程即可求解的值【詳解】依題意得,直線與圓相切所以,即,解得:,又,故答案為:216、【解析】如圖:則當(dāng)時,即時,當(dāng)時,原式點睛:本題主要考查了分段函數(shù)求最值問題,在定義域為動區(qū)間的情況下進(jìn)行分類討論,先求出最大值與最小值的情況,然后計算,本題的關(guān)鍵是要注意數(shù)形結(jié)合,結(jié)合圖形來研究最值問題,本題有一定的難度三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用函數(shù)的奇偶性結(jié)合條件即得;(2)由題可知在上恒成立,利用函數(shù)的單調(diào)性可求,即得.【小問1詳解】∵當(dāng)時,,∴當(dāng)時,,∴,又是定義在上的偶函數(shù),∴,故當(dāng)時,;【小問2詳解】由在上恒成立,∴在上恒成立,∴又∵與在上單調(diào)遞增,∴,∴,解得或,∴實數(shù)的取值范圍為.18、(1);(2).【解析】(1)根據(jù)給定條件依次計算出,即可作答.(2)由(1)求出函數(shù)的解析式,再探討在上的性質(zhì),結(jié)合圖象即可作答.【小問1詳解】因圖像的相鄰兩條對稱軸之間的距離為,則周期,解得,又,即,而,即,則,即,所以函數(shù)的解析式.【小問2詳解】依題意,,當(dāng)時,,而函數(shù)在上遞增,在上遞減,由得,由得,因此,函數(shù)在上單調(diào)遞增,函數(shù)值從增到2,在上單調(diào)遞減,函數(shù)值從2減到1,又是圖象的一條對稱軸,直線與函數(shù)在上的圖象有兩個公共點,當(dāng)且僅當(dāng),如圖,于是得方程在上有兩個不相等的實數(shù)解時,當(dāng)且僅當(dāng),所以實數(shù)m的取值范圍.19、(1);(2)(i);(ii)或.【解析】(1)根據(jù)二次函數(shù)的對稱軸、求參數(shù)a、b、c,寫出的解析式;(2)(i)利用二次函數(shù)的性質(zhì),結(jié)合的區(qū)間單調(diào)性求的取值范圍;(ii)討論、、,結(jié)合二次函數(shù)的性質(zhì)求最小值的表達(dá)式,再令并應(yīng)用數(shù)形結(jié)合的方法研究的零點情況求的取值范圍.【詳解】(1)設(shè)由題意知:對稱軸,,又,則,,設(shè)的兩根為,,則,,由已知:,解得.(2)(i),其對稱軸為為單調(diào)函數(shù),或,解得或.的取值范圍是.(ii),,對稱軸①當(dāng),即時,區(qū)間單調(diào)遞增,.②當(dāng),即時,在區(qū)間單調(diào)遞減,③當(dāng),即時,,函數(shù)零點即為方程的根令,即,作出的簡圖如圖所示①當(dāng)時,,或,解得或,有個零點;②當(dāng)時,有唯一解,解得,有個零點;③當(dāng)時,有兩個不同解,,解得或,有4個零點;④當(dāng)時,,,解得,有個零點;⑤當(dāng)時,無解,無零點綜上:當(dāng)或時,有個零點.【點睛】關(guān)鍵點點睛:第二問,(i)分類討論并結(jié)合二次函數(shù)區(qū)間單調(diào)性求參數(shù)范圍,(ii)分類討論求最小值的表達(dá)式,再應(yīng)用換元法及數(shù)形結(jié)合求參數(shù)范圍.20、(1)90;(2)0;(3).【解析】(1)利用指數(shù)冪的運算性質(zhì)可求代數(shù)式的值.(2)利用對數(shù)的運算性質(zhì)可求代數(shù)式的值.(3)將給定的代數(shù)式兩邊平方后得到,再次平方后則可求的值.【詳解】(1)原式(2)原式(3)因為,兩邊平方得即所以即又,所以21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年消防接扣項目可行性研究報告
- 北京信息職業(yè)技術(shù)學(xué)院《馬克思主義哲學(xué)經(jīng)典著作》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)生犯錯檢討書15篇
- 2025年數(shù)據(jù)中心消防系統(tǒng)安裝與檢測合同3篇
- 2024年拼花會議臺項目可行性研究報告
- 2024年建筑用磚項目可行性研究報告
- 2024年中國全自動紙盒封裝機市場調(diào)查研究報告
- 早教器具使用課程設(shè)計
- 2024年中國井位安全防污地墊市場調(diào)查研究報告
- 2025版客運包車安全責(zé)任協(xié)議2篇
- 召回產(chǎn)品處理記錄表
- 漢語拼音字母表
- 中天項目管理標(biāo)準(zhǔn)化講義(文明施工、CIS、防護(hù)設(shè)施)
- IT運維服務(wù)項目技術(shù)外包合同
- 調(diào)味料生產(chǎn)工藝流程圖
- 2023北師大版六年級上冊數(shù)學(xué)期末試卷(共8套)
- 企業(yè)的涉稅風(fēng)險
- 武漢大學(xué)抬頭信簽紙
- 新人教版七年級下冊生物每課知識點總結(jié)
- 印刷作業(yè)指導(dǎo)書
- 2022年農(nóng)業(yè)示范基地建設(shè)工作總結(jié)
評論
0/150
提交評論