福建省仙游縣2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
福建省仙游縣2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
福建省仙游縣2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
福建省仙游縣2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
福建省仙游縣2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省仙游縣2025屆數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.2.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數(shù)為()A. B.C. D.3.直線的一個法向量為()A. B.C. D.4.已知遞增等比數(shù)列的前n項和為,,且,則與的關系是()A. B.C. D.5.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.6.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁7.正方體的表面積為,則正方體外接球的表面積為(

)A. B.C. D.8.設函數(shù),則和的值分別為()A.、 B.、C.、 D.、9.若(為虛數(shù)單位),則復數(shù)在復平面內(nèi)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.11.已知直線,兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則12.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在等腰直角△ABC中,,點P是邊AB上異于A、B的一點,光線從點P出發(fā),經(jīng)BC、CA反射后又回到原點P.若光線QR經(jīng)過△ABC的內(nèi)心,則___________.14.函數(shù)在點處的切線方程是_________15.棱長為的正方體的頂點到截面的距離等于__________.16.已知是雙曲線上的一點,是上的兩個焦點,若,則的取值范圍是_______________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的方程為,點,過點的直線交拋物線于,兩點(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點是直線上的動點,且,求面積的最小值18.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.19.(12分)已知等差數(shù)列中,,,等比數(shù)列中,,(1)求數(shù)列的通項公式;(2)記,求的最小值20.(12分)已知直線和直線(1)若時,求a的值;(2)當平行,求兩直線,的距離21.(12分)區(qū)塊鏈技術被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術區(qū)塊鏈作為構造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關數(shù)據(jù),如表年份20152016201720182019編號x12345企業(yè)總數(shù)量y(單位:千個)2.1563.7278.30524.27936.224注:參考數(shù)據(jù),,,(其中).附:樣本的最小二乘法估計公式為,(1)根據(jù)表中數(shù)據(jù)判斷,與(其中,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結果即可,不必說明理由)(2)根據(jù)(1)的結果,求y關于x的回歸方程;(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,若首場由甲乙比賽,則求甲公司獲得“優(yōu)勝公司”的概率.22.(10分)已知直線,,,其中與交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A2、B【解析】由直線方程的性質依次判斷各命題即可得出結果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.3、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.4、D【解析】設等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D5、A【解析】由和的分母異號可得【詳解】由題意,解得或故選:A6、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.7、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B8、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.9、A【解析】根據(jù)復數(shù)運算法則求出z=a+bi形式,根據(jù)復數(shù)的幾何意義即可求解.【詳解】,z對應的點在第一象限.故選:A10、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B11、A【解析】根據(jù)線面、面面位置關系有關知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,根據(jù)面面垂直的判定定理可知,A選項正確,對于B選項,當,時,和可能相交,B選項錯誤,對于C選項,當,時,可能含于,C選項錯誤,對于D選項,當,時,可能含于,D選項錯誤.故選:A12、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應用,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以為坐標原點建立空間直角坐標系,設出點的坐標,求得△的內(nèi)心坐標,根據(jù)△內(nèi)心以及關于的對稱點三點共線,即可求得點的坐標,則問題得解.【詳解】根據(jù)題意,以為坐標原點,建立平面直角坐標系,設點關于直線的對稱點為,關于軸的對稱點為,如下所示:則,不妨設,則直線的方程為,設點坐標為,則,且,整理得,解得,即點,又;設△的內(nèi)切圓圓心為,則由等面積法可得,解得;故其內(nèi)心坐標為,由及△的內(nèi)心三點共線,即,整理得,解得(舍)或,故.故答案為:.14、【解析】求得函數(shù)的導數(shù),得到且,再結合直線的點斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點處切線方程是,即故答案為:.15、【解析】根據(jù)勾股定理可以計算出,這樣得到是直角三角形,利用等體積法求出點到的距離.【詳解】解:如圖所示,在三棱錐中,是三棱錐的高,,在中,,,,所以是直角三角形,,設點到的距離為,.故A到平面的距離為故答案為:【點睛】本題考查了點到線的距離,利用等體積法求出點到面的距離.是解題的關鍵.16、【解析】由題意,,.故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)是,;(2)【解析】(1)由題意設出所在直線方程,與拋物線方程聯(lián)立,化為關于的一元二次方程,由根與系數(shù)的關系即可求得為定值;(2)當?shù)男甭蕿?時,求得三角形的面積為;當?shù)男甭什粸?時,由弦長公式求解,再由點到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設其方程為,聯(lián)立拋物線的方程可得,設,,則,,所以,,所以,所以是定值(2)當直線的斜率為0時,,又,,此時當直線的斜率不力0時,,又因為,且直線的斜率不為0,所以,即,所以點到直線的距離,此時,因為,所以,綜上,面積的最小值為18、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標式坐標化可得與無關,可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設存在滿足條件的點,直線,有,,設,有,,,,當時,為定值,所以.19、(1)(2)0【解析】(1)利用等差數(shù)列通項公式基本量的計算可求得,進而利用等比數(shù)列的基本量的計算即可求得數(shù)列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設等差數(shù)列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n=1時,為正值﹐所以;當n=2時,為負值﹐所以;當時,為正值﹐所以又綜上:當n=3時,有最小值020、(1)(2)【解析】(1)由垂直可得兩直線系數(shù)關系,即可得關于實數(shù)a的方程.(2)由平行可得兩直線系數(shù)關系,即可得關于實數(shù)a的方程,進而可求出兩直線的方程,結合直線的距離公式即可求出直線與之間的距離.【小問1詳解】∵,且,∴,解得【小問2詳解】∵,,且,∴且,解得,∴,即∴直線間的距離為21、(1)(2)(3)【解析】(1)根據(jù)表中數(shù)據(jù)判斷y關于x的回歸方程為非線性方程;(2)令,將y關于x的非線性關系,轉化為z關于x的線性關系,利用最小二乘法求解;(3)利用相互獨立事件的概率相乘求求解;【小問1詳解】根據(jù)表中數(shù)據(jù)適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量.【小問2詳解】,,令,則,,由公式計算可知,即,即所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論