廣西南寧市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第1頁
廣西南寧市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第2頁
廣西南寧市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第3頁
廣西南寧市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第4頁
廣西南寧市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西南寧市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地為應(yīng)對極端天氣搶險救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.142.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.3.如圖,P為圓錐的頂點,O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.4.拋物線的準線方程為,則實數(shù)的值為()A. B.C. D.5.已知等差數(shù)列的前n項和為Sn,首項a1=1,若,則公差d的取值范圍為()A. B.C. D.6.若函數(shù),當時,平均變化率為3,則等于()A. B.2C.3 D.17.若兩直線與互相垂直,則k的值為()A.1 B.-1C.-1或1 D.28.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.9.已知,,直線:,:,且,則的最小值為()A.2 B.4C.8 D.910.在正方體中中,,若點P在側(cè)面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.11.函數(shù),若實數(shù)是函數(shù)的零點,且,則()A. B.C. D.無法確定12.已知向量,且,則的值為()A.4 B.2C.3 D.1二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,,則______.14.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.15.若點為圓的弦的中點,則弦所在直線方程為________.16.從某校隨機抽取某次數(shù)學(xué)考試100分以上(含100分,滿分150分)的學(xué)生成績,將他們的分數(shù)數(shù)據(jù)繪制成如圖所示頻率分布直方圖.若共抽取了100名學(xué)生的成績,則分數(shù)在內(nèi)的人數(shù)為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為數(shù)列的前n項和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.18.(12分)某快餐配送平臺針對外賣員送餐準點情況制定了如下的考核方案:每一單自接單后在規(guī)定時間內(nèi)送達、延遲5分鐘內(nèi)送達、延遲5至10分鐘送達、其他延遲情況,分別評定為四個等級,各等級依次獎勵3元、獎勵0元、罰款3元、罰款6元.假定評定為等級的概率分別是.(1)若某外賣員接了一個訂單,求其不被罰款的概率;(2)若某外賣員接了兩個訂單,且兩個訂單互不影響,求這兩單獲得的獎勵之和為3元的概率.19.(12分)已知數(shù)列,,,且,其中為常數(shù)(1)證明:;(2)是否存在,使得為等差數(shù)列?并說明理由20.(12分)已知,,函數(shù),直線是函數(shù)圖象的一條對稱軸(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;(2)若,,的面積為,求的周長21.(12分)中,三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a22.(10分)設(shè)圓的圓心為﹐直線l過點且與x軸不重合,直線l交圓于A,B兩點.過作的平行線交于點P.(1)求點P的軌跡方程;(2)設(shè)點P的軌跡為曲線E,直線l交E于M,N兩點,C在線段上運動,原點O關(guān)于C的對稱點為Q,求四邊形面積的取值范圍;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當目標函數(shù)經(jīng)過時,縱截距最大,最大.故選:B2、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內(nèi),又圓的圓心為則,此時直線過圓心;當直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.3、B【解析】先求出,再利用向量的線性運算和數(shù)量積計算求解.【詳解】解:由題得,,故選:B4、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準線方程為,所以.故選:B5、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A6、B【解析】直接利用平均變化率的公式求解.【詳解】解:由題得.故選:B7、B【解析】根據(jù)互相垂直的兩直線的性質(zhì)進行求解即可.【詳解】由,因此直線的斜率為,直線的斜率為,因為兩直線與互相垂直,所以,故選:B8、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.9、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【詳解】因為,所以,即,因為,,所以,當且僅當,即時等號成立,所以的最小值為8.故選:C.【點睛】本題考查垂直直線的性質(zhì),考查利用基本不等式求最值,考查學(xué)生的計算求解能力,屬于中檔題.10、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側(cè)面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A11、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實數(shù)是函數(shù)的零點,即,又因為,所以,故選:A12、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)遞推關(guān)系依次求得的值.【詳解】依題意數(shù)列滿足,,所以.故答案為:14、【解析】首先將圓的方程配成標準式,即可得到圓心坐標與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:15、【解析】因為為圓的弦的中點,所以圓心坐標為,,所在直線方程為,化簡為,故答案為.考點:1、兩直線垂直斜率的關(guān)系;2、點斜式求直線方程.16、30【解析】根據(jù)頻率分布直方圖中所以小矩形面積和為1,可得a值,根據(jù)總?cè)藬?shù)和頻率,即可得答案.【詳解】因為頻率分布直方圖中所以小矩形面積和為1,所以,解得,所以分數(shù)在內(nèi)的人數(shù)為.故答案為:30三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)存在時是等差數(shù)列,詳見解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進而可求數(shù)列的通項公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當時,由,∴數(shù)列的奇數(shù)項構(gòu)成的數(shù)列為首項為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列的偶數(shù)項構(gòu)成的數(shù)列為首項為2,公差為2的等差數(shù)列,∴,即,為偶數(shù),綜上可得,當時,,,故存在時,使數(shù)列是等差數(shù)列.18、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由條件可知兩單共獲得的獎勵為3元即事件,同樣利用互斥事件和的概率,即可求解.【小問1詳解】設(shè)事件分別表示“被評為等級”,由題意,事件兩兩互斥,所以,又“不被罰款”,所以.因此“不被罰款”概率為;【小問2詳解】設(shè)事件表示“第單被評為等級”,,則“兩單共獲得的獎勵為3元”即事件,且事件彼此互斥,又,所以.19、(1)證明見解析(2)存在;理由見解析【解析】(1)由得兩式相減可得答案;(2)利用得,可得,是首項為1,公差為4的等差數(shù)列,是首項為3,公差為4的等差數(shù)列,因此存在【小問1詳解】由題設(shè),,,兩式相減得,,由于,所以【小問2詳解】由題設(shè),,,可得,由(1)知,.令,解得,故,由此可得,是首項為1,公差為4的等差數(shù)列,;又,同理,是首項為3,公差為4的等差數(shù)列,所以,所以.因此存在,使得為等差數(shù)列20、(1),單調(diào)遞增區(qū)間為.(2)【解析】(1)先利用向量數(shù)量積運算、二倍角公式、輔助角公式求出,再求單增區(qū)間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數(shù),所以.因為直線是函數(shù)圖象的一條對稱軸,所以,所以,又,所以當k=0時,符合題意,此時要求的單調(diào)遞增區(qū)間,只需,解得:,所以的單調(diào)遞增區(qū)間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.21、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問1詳解】由及正弦定理,得∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論