西寧第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁(yè)
西寧第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁(yè)
西寧第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁(yè)
西寧第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁(yè)
西寧第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

西寧第十四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若傾斜角為的直線過,兩點(diǎn),則實(shí)數(shù)()A. B.C. D.2.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無(wú)法判斷3.加斯帕爾·蒙日(圖1)是18~19世紀(jì)法國(guó)著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”(圖2).則橢圓的蒙日?qǐng)A的半徑為()A.3 B.4C.5 D.64.若函數(shù)在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.66.設(shè)函數(shù),則()A.1 B.5C. D.07.橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則()A.2 B.3C.4 D.88.以橢圓+=1的焦點(diǎn)為頂點(diǎn),以這個(gè)橢圓的長(zhǎng)軸的端點(diǎn)為焦點(diǎn)的雙曲線方程是()A. B.C. D.9.若動(dòng)點(diǎn)滿足方程,則動(dòng)點(diǎn)P的軌跡方程為()A. B.C. D.10.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.811.不等式解集為()A. B.C. D.12.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.將參加冬季越野跑的名選手編號(hào)為:,采用系統(tǒng)抽樣方法抽取一個(gè)容量為的樣本,把編號(hào)分為組后,第一組的到這個(gè)編號(hào)中隨機(jī)抽得的號(hào)碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________14.橢圓的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),則以下說法正確的是()A.過點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長(zhǎng)為8B.橢圓上存在點(diǎn),使得C.橢圓的離心率為D.為橢圓上一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為315.阿基米德(公元前287—公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.已知橢圓經(jīng)過點(diǎn),則當(dāng)取得最大值時(shí),橢圓的面積為_________16.橢圓x2+=1上的點(diǎn)到直線x+y-4=0的距離的最小值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:短軸長(zhǎng)為2,且點(diǎn)在C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)、為橢圓的左、右焦點(diǎn),過的直線l交橢圓C與A、B兩點(diǎn),若的面積是,求直線l的方程18.(12分)雙曲線的離心率為,虛軸的長(zhǎng)為4.(1)求的值及雙曲線的漸近線方程;(2)直線與雙曲線相交于互異兩點(diǎn),求的取值范圍.19.(12分)已知函數(shù)(1)判斷的零點(diǎn)個(gè)數(shù);(2)若對(duì)任意恒成立,求的取值范圍20.(12分)北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到x元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).21.(12分)已知點(diǎn)A(,0),點(diǎn)C為圓B:(B為圓心)上一動(dòng)點(diǎn),線段AC的垂直平分線與直線BC交于點(diǎn)G(1)設(shè)點(diǎn)G的軌跡為曲線T,求曲線T的方程;(2)若過點(diǎn)P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點(diǎn),求△MNO面積的最大值22.(10分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線的傾斜角和斜率的關(guān)系得到直線的斜率為,再根據(jù)兩點(diǎn)的斜率公式計(jì)算可得;【詳解】解:因?yàn)橹本€的傾斜角為,所以直線的斜率為,所以,解得;故選:C2、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項(xiàng).【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A3、A【解析】由蒙日?qǐng)A的定義,確定出圓上的一點(diǎn)即可求出圓的半徑.【詳解】由蒙日?qǐng)A的定義,可知橢圓的兩條切線的交點(diǎn)在圓上,所以,故選:A4、D【解析】求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為在有解,進(jìn)而求函數(shù)的最值,即可求出的范圍.【詳解】∵,∴,若在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則有解,故,令,則在單調(diào)遞增,,故.故選:D.5、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào),所以的最小值為9,故選:A6、B【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.7、D【解析】由條件可得,,,,由關(guān)系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,∴,又,∴,∴,故選:D.8、B【解析】根據(jù)橢圓的幾何性質(zhì)求橢圓的焦點(diǎn)坐標(biāo)和長(zhǎng)軸端點(diǎn)坐標(biāo),由此可得雙曲線的a,b,c,再求雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長(zhǎng)軸端點(diǎn)坐標(biāo)為,,焦點(diǎn)坐標(biāo)為,,∴雙曲線的焦點(diǎn)在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.9、A【解析】根據(jù)方程可以利用幾何意義得到動(dòng)點(diǎn)P的軌跡方程是以與為焦點(diǎn)的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動(dòng)點(diǎn)P的軌跡方程是以與為焦點(diǎn)的橢圓方程,故,,所以,,所以橢圓方程為.故選:A10、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長(zhǎng)公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D11、C【解析】化簡(jiǎn)一元二次不等式的標(biāo)準(zhǔn)形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.12、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,所以抽到穿白色衣服的選手號(hào)碼為,共14、ABD【解析】結(jié)合橢圓定義判斷A選項(xiàng)的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算判斷B選項(xiàng)的正確性,直接法求得橢圓的離心率,由此判斷C選項(xiàng)的正確性,結(jié)合兩點(diǎn)間距離公式判斷D選項(xiàng)的正確性.【詳解】對(duì)于選項(xiàng):由橢圓定義可得:,因此的周長(zhǎng)為,所以選項(xiàng)正確;對(duì)于選項(xiàng):設(shè),則,且,又,,所以,,因此,解得,,故選項(xiàng)正確;對(duì)于選項(xiàng):因?yàn)椋?,所以,即,所以離心率,所以選項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng):設(shè),,則點(diǎn)到圓的圓心的距離為,因?yàn)?,所以,所以選項(xiàng)正確,故選:ABD15、【解析】利用基本不等式得出取得最大值時(shí)的條件結(jié)合可知,再利用點(diǎn)在橢圓方程上,故可求得、的值,進(jìn)而求出橢圓的面積.詳解】由基本不等式可得,當(dāng)且僅當(dāng)時(shí)取得最大值,由可知,∵橢圓經(jīng)過點(diǎn),∴,解得,,則橢圓的面積為.故答案為:.16、【解析】設(shè)與直線x+y-4=0平行的直線方程為,求出即得解.【詳解】解:設(shè)與直線x+y-4=0平行的直線方程為,所以,代入橢圓方程得,令或.當(dāng)時(shí),平行線間的距離為;當(dāng)時(shí),平行線間的距離為.所以最小距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)短軸長(zhǎng)求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設(shè)直線l為,與橢圓方程聯(lián)立得根與系數(shù)關(guān)系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長(zhǎng)為2,∴,∴,又∵點(diǎn)在C上,∴,∴,∴橢圓C的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)知,∵當(dāng)直線l斜率為0時(shí),不符合題意,∴設(shè)直線l的方程為:,聯(lián)立,消x得:,∵,∴設(shè),,則,∵,∴,∴,即,解得,∴直線l的方程為:或.18、(1),,雙曲線的漸近線方程為和;(2).【解析】(1)根據(jù)雙曲線的離心率公式,結(jié)合虛軸長(zhǎng)的定義進(jìn)行求解即可;(2)將直線方程與雙曲線方程聯(lián)立,利用方程解的個(gè)數(shù)進(jìn)行求解即可.【小問1詳解】因?yàn)殡p曲線的離心率為,所以有ca而該雙曲線的虛軸的長(zhǎng)為4,所以,所以,因此雙曲線的浙近線方程為:y=±x?x-y=0或;【小問2詳解】由(1)可知:,,所以該雙曲線的標(biāo)準(zhǔn)方程為:,與直線聯(lián)立得:,因?yàn)橹本€與雙曲線相交于互異兩點(diǎn),所以有:且,所以的取值范圍為:.19、(1)個(gè);(2).【解析】(1)求,利用導(dǎo)數(shù)判斷的單調(diào)性,結(jié)合單調(diào)性以及零點(diǎn)存在性定理即可求解;(2)由題意可得對(duì)任意恒成立,令,則,利用導(dǎo)數(shù)求的最小值即可求解.【小問1詳解】的定義域?yàn)?,由可得,?dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),,,此時(shí)在上無(wú)零點(diǎn),當(dāng)時(shí),,,,且在上單調(diào)遞增,由零點(diǎn)存在定理可得在區(qū)間上存在個(gè)零點(diǎn),綜上所述有個(gè)零點(diǎn).【小問2詳解】由題意可得:對(duì)任意恒成立,即對(duì)任意恒成立,令,則,由可得:,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以,所以的取值范圍.20、(1)40;(2)a至少達(dá)到10.2萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和,此時(shí)該商品的每件定價(jià)為30元.【解析】(1)設(shè)每件定價(jià)為x元,可得提高價(jià)格后的銷售量,根據(jù)銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價(jià);(2)依題意,x>25時(shí),不等式有解,等價(jià)于x>25時(shí),有解,利用基本不等式,可以求得a.【詳解】(1)設(shè)每件定價(jià)為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價(jià)最多為40元.(2)依題意知:當(dāng)x>25時(shí),不等式有解,等價(jià)于x>25時(shí),有解.由于,當(dāng)且僅當(dāng),即x=30時(shí)等號(hào)成立,所以a≥10.2.當(dāng)該商品改革后的銷售量a至少達(dá)到10.2萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和,此時(shí)該商品的每件定價(jià)為30元.21、(1)(2)1【解析】(1)可由題意,點(diǎn)G在線段AC的垂直平分線上,,可利用橢圓的定義,得到點(diǎn)G的軌跡為橢圓,然后利用已知的長(zhǎng)度關(guān)系求解出橢圓方程;(2)可通過設(shè)l的方程,利用l是圓O的切線,通過點(diǎn)到直線的距離得到一組等量關(guān)系,然后將直線與橢圓聯(lián)立方程,計(jì)算弦長(zhǎng),表示出△MNO面積的表達(dá)式,將上面得到的等量關(guān)系代入利用基本不等式即可求解出最值.【小問1詳解】依題意有,,即G點(diǎn)軌跡是以A,B為焦點(diǎn)的橢圓,設(shè)橢圓方程為由題意可知,,則,,所以曲線T的方程為【小問2詳解】設(shè),,設(shè)直線l的方程為,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論