專題16銳角三角函數(shù)及其應(yīng)用(5大考點(diǎn))(原卷版)_第1頁(yè)
專題16銳角三角函數(shù)及其應(yīng)用(5大考點(diǎn))(原卷版)_第2頁(yè)
專題16銳角三角函數(shù)及其應(yīng)用(5大考點(diǎn))(原卷版)_第3頁(yè)
專題16銳角三角函數(shù)及其應(yīng)用(5大考點(diǎn))(原卷版)_第4頁(yè)
專題16銳角三角函數(shù)及其應(yīng)用(5大考點(diǎn))(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第四部分三角形專題16銳角三角函數(shù)及其應(yīng)用(5大考點(diǎn))核心考點(diǎn)核心考點(diǎn)一特殊角的三角函數(shù)值及其計(jì)算核心考點(diǎn)二由三角函數(shù)值求銳角核心考點(diǎn)三銳角三角函數(shù)的增減性核心考點(diǎn)四解直角三角形及其應(yīng)用核心考點(diǎn)五三角函數(shù)的綜合新題速遞核心考點(diǎn)一特殊角的三角函數(shù)值及其運(yùn)算例1(2021·貴州黔東南·統(tǒng)考中考真題)如圖,在邊長(zhǎng)為2的正方形ABCD中,若將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在點(diǎn)的位置,連接B,過點(diǎn)D作DE⊥,交的延長(zhǎng)線于點(diǎn)E,則的長(zhǎng)為(

)A. B. C. D.例2.(2022·黑龍江綏化·統(tǒng)考中考真題)定義一種運(yùn)算;,.例如:當(dāng),時(shí),,則的值為_______.例3(2022·山東濰坊·中考真題)(1)在計(jì)算時(shí),小亮的計(jì)算過程如下:解:小瑩發(fā)現(xiàn)小亮的計(jì)算有誤,幫助小亮找出了3個(gè)錯(cuò)誤.請(qǐng)你找出其他錯(cuò)誤,參照①~③的格式寫在橫線上,并依次標(biāo)注序號(hào):①;②;③;____________________________________________________________________________.請(qǐng)寫出正確的計(jì)算過程.(2)先化簡(jiǎn),再求值:,其中x是方程的根.知識(shí)點(diǎn):特殊角的三角函數(shù)值圖表記憶三角函數(shù)圖形記憶30°45°60°1規(guī)律記憶30°,45°,60°角的正弦值的分母都是2,分子依次為1,,;30°,45°,60°角的余弦值分別是60°,45°,30°角的正弦值。【變式1】(2022·湖南邵陽(yáng)·統(tǒng)考模擬預(yù)測(cè))如圖,在矩形ABCD中,AB=4,AB>BC,以點(diǎn)A為圓心、AB長(zhǎng)為半徑的弧BE與DC相交于點(diǎn)E,點(diǎn)E為DC的中點(diǎn),則由BC、CE和弧BE圍成的陰影部分圖形的面積是(

)A. B. C. D.【變式2】(2022·河南洛陽(yáng)·統(tǒng)考二模)如圖1,在中,,點(diǎn)D是邊上的中點(diǎn),點(diǎn)P從的頂點(diǎn)A出發(fā),沿的路徑以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng)到點(diǎn)D.線段的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象如圖2所示,點(diǎn)N是曲線部分的最低點(diǎn),則的面積為(

)A.4 B. C.8 D.【變式3】(2020·四川自貢·??家荒#┰谥?,若,,都是銳角,則是______三角形.【變式4】(2022·貴州銅仁·統(tǒng)考二模)如圖,將一個(gè)矩形紙片OABC放置在平面直角坐標(biāo)系中,點(diǎn)O(0,0),點(diǎn)B(,2).D是邊BC上一點(diǎn)(不與點(diǎn)B重合),過點(diǎn)D作DE∥OB交OC于點(diǎn)E.將該紙片沿DE折疊,得點(diǎn)C的對(duì)應(yīng)點(diǎn)C′.當(dāng)點(diǎn)C′落在OB上時(shí),點(diǎn)C′的坐標(biāo)為________.【變式5】.(2021·新疆烏魯木齊·??既#┯?jì)算:核心考點(diǎn)二由三角函數(shù)值求銳角例1(2021·山東泰安·統(tǒng)考中考真題)如圖,在中,,以點(diǎn)A為圓心,3為半徑的圓與邊相切于點(diǎn)D,與,分別交于點(diǎn)E和點(diǎn)G,點(diǎn)F是優(yōu)弧上一點(diǎn),,則的度數(shù)是(

)A.50° B.48° C.45° D.36°例2.(2022·重慶·統(tǒng)考中考真題)如圖,在矩形中,,,以B為圓心,的長(zhǎng)為半徑畫弧,交于點(diǎn)E.則圖中陰影部分的面積為_________.(結(jié)果保留)例3(2021·山東菏澤·統(tǒng)考中考真題)在矩形中,,點(diǎn),分別是邊、上的動(dòng)點(diǎn),且,連接,將矩形沿折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)如圖1,當(dāng)與線段交于點(diǎn)時(shí),求證:;(2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),交于點(diǎn),求證:點(diǎn)在線段的垂直平分線上;(3)當(dāng)時(shí),在點(diǎn)由點(diǎn)移動(dòng)到中點(diǎn)的過程中,計(jì)算出點(diǎn)運(yùn)動(dòng)的路線長(zhǎng).【變式1】(2022·山東濱州·統(tǒng)考一模)如圖,在半徑為6的⊙O中,點(diǎn)A是劣弧的中點(diǎn),點(diǎn)D是優(yōu)弧上一點(diǎn),sinD=,則BC的長(zhǎng)為(

)A. B. C. D.【變式2】(2022·山東·統(tǒng)考二模)如圖,已知在矩形中,,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),連結(jié),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)也隨之運(yùn)動(dòng).若點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn),則線段掃過的區(qū)域的面積是(

)A. B. C. D.【變式3】(2021·貴州遵義·統(tǒng)考一模)在綜合實(shí)踐課上,某學(xué)習(xí)小組要測(cè)量塔的高度,在測(cè)量過程中,結(jié)合圖形進(jìn)行了操作(如圖所示).在塔AB前的平地上選擇一點(diǎn)C,測(cè)出塔頂?shù)难鼋菫?0°,從C點(diǎn)向塔底B走80m到達(dá)D點(diǎn),測(cè)出塔頂?shù)难鼋菫?5°,那么塔AB的高為____________m(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù):,).【變式4】.(2022·吉林長(zhǎng)春·統(tǒng)考二模)如圖,在平面直角坐標(biāo)系中,點(diǎn)在第一象限,連結(jié),過點(diǎn)作軸于點(diǎn),,,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后,得到,則點(diǎn)的坐標(biāo)為______.【變式5】(2022·重慶·重慶八中校考模擬預(yù)測(cè))如圖,一艘漁船位于小島的北偏東方向,距離小島千米的點(diǎn)處,它沿著點(diǎn)的南偏東的方向航行.(1)漁船航行多遠(yuǎn)距離小島最近(結(jié)果保留根號(hào))?(2)漁船到達(dá)距離小島最近點(diǎn)后,按原航向繼續(xù)航行千米到點(diǎn)C處時(shí)突然發(fā)生事故,漁船馬上向小島上的救援隊(duì)求救,問救援隊(duì)從處出發(fā)沿著哪個(gè)方向航行到達(dá)事故地點(diǎn)航程最短,最短航程是多少.(結(jié)果精確到1千米,參考數(shù)據(jù))核心考點(diǎn)三銳角三角函數(shù)的增減性例1(2020·湖南婁底·中考真題)如圖,撬釘子的工具是一個(gè)杠桿,動(dòng)力臂,阻力臂,如果動(dòng)力F的用力方向始終保持豎直向下,當(dāng)阻力不變時(shí),則杠桿向下運(yùn)動(dòng)時(shí)的動(dòng)力變化情況是(

)A.越來越小 B.不變 C.越來越大 D.無(wú)法確定例2(2022·陜西西安·交大附中分校校考三模)如圖,在矩形ABCD中,O是對(duì)角線AC的中點(diǎn),E為AD上一點(diǎn),若,則AB的最大值為__________.例3(2021·浙江寧波·統(tǒng)考一模)如圖是某公園的一臺(tái)滑梯,滑梯著地點(diǎn)B與梯架之間的距離.(1)現(xiàn)在某一時(shí)刻測(cè)得身高1.8m的小明爸爸在陽(yáng)光下的影長(zhǎng)為0.9m,滑梯最高處A在陽(yáng)光下的影長(zhǎng)為1m,求滑梯的高;(2)若規(guī)定滑梯的傾斜角()不超過30°屬于安全范圍,請(qǐng)通過計(jì)算說明這架滑梯的傾斜角是否符合安全要求?1.三角函數(shù)值的變化規(guī)律①當(dāng)角度A在0°—90°間變化時(shí),正弦值和正切值隨著角度的增大(或減?。┒龃螅ɑ驕p小)②當(dāng)角度A在0°—90°間變化時(shí),余弦值和余切值隨著角度的增大(或減?。┒鴾p?。ɑ蛟龃螅??!咀兪?】(2020·甘肅張掖·統(tǒng)考模擬預(yù)測(cè))若,則下列說法不正確的是(

)A.隨的增大而增大 B.cos隨的減小而減小 C.tan隨的增大而增大 D.0<sin<1【變式2】.(2022·上?!ば?寄M預(yù)測(cè))如果銳角A的度數(shù)是25°,那么下列結(jié)論中正確的是(

)A. B.C. D.【變式3】(2020·內(nèi)蒙古·統(tǒng)考二模)在直角三角形ABC中,角C為直角,銳角A的余弦函數(shù)定義為_____,寫出sin70o、cos40o、cos50o的大小關(guān)系__________.【變式4】(2022·江蘇宿遷·統(tǒng)考二模)如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)平分,,點(diǎn)、分別在、上運(yùn)動(dòng),且,連接、交于點(diǎn),點(diǎn),連接,則度數(shù)的最大值為__________.【變式5】(2022春·全國(guó)·九年級(jí)專題練習(xí))如圖,已知和射線上一點(diǎn)(點(diǎn)與點(diǎn)不重合),且點(diǎn)到、的距離為、.(1)若,,,試比較、的大??;(2)若,,,都是銳角,且.試判斷、的大小,并給出證明.核心考點(diǎn)四解直角三角形及其應(yīng)用例1(2022·湖北黃石·統(tǒng)考中考真題)我國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù):割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無(wú)所失矣",即通過圓內(nèi)接正多邊形割圓,從正六邊形開始,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,內(nèi)接正二十四邊形,…….邊數(shù)越多割得越細(xì),正多邊形的周長(zhǎng)就越接近圓的周長(zhǎng).再根據(jù)“圓周率等于圓周長(zhǎng)與該圓直徑的比”來計(jì)算圓周率.設(shè)圓的半徑為R,圖1中圓內(nèi)接正六邊形的周長(zhǎng),則.再利用圓的內(nèi)接正十二邊形來計(jì)算圓周率則圓周率約為(

)A. B. C. D.例2(2022·湖北黃石·統(tǒng)考中考真題)某校數(shù)學(xué)興趣小組開展無(wú)人機(jī)測(cè)旗桿的活動(dòng):已知無(wú)人機(jī)的飛行高度為30m,當(dāng)無(wú)人機(jī)飛行至A處時(shí),觀測(cè)旗桿頂部的俯角為30°,繼續(xù)飛行20m到達(dá)B處,測(cè)得旗桿頂部的俯角為60°,則旗桿的高度約為________m.(參考數(shù)據(jù):,結(jié)果按四舍五八保留一位小數(shù))例3(2022·遼寧阜新·統(tǒng)考中考真題)如圖,小文在數(shù)學(xué)綜合實(shí)踐活動(dòng)中,利用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量居民樓的高度,在居民樓前方有一斜坡,坡長(zhǎng),斜坡的傾斜角為,.小文在點(diǎn)處測(cè)得樓頂端的仰角為,在點(diǎn)處測(cè)得樓頂端的仰角為(點(diǎn),,,在同一平面內(nèi)).(1)求,兩點(diǎn)的高度差;(2)求居民樓的高度.(結(jié)果精確到,參考數(shù)據(jù):)在直角三角形中,除直角外,一共有5個(gè)元素,即3條邊和2個(gè)銳角,由直角三角形中除直角外的已知元素,求出所有未知元素的過程,叫做解直角三角形。1.靈活運(yùn)用邊角關(guān)系求邊與角;2.若所求解的直角三角形“不可直接解”,應(yīng)注意設(shè)元,借助方程來解決;3.如果圖形中沒有直角時(shí),要添加垂線將其轉(zhuǎn)化為直角三角形求解.【變式1】(2023·浙江溫州·校聯(lián)考模擬預(yù)測(cè))如圖,一把梯子斜靠在墻上,端點(diǎn)A離地面的高度長(zhǎng)為時(shí),.當(dāng)梯子底端點(diǎn)B沿水平方向向左移動(dòng)到點(diǎn),端點(diǎn)A沿墻豎直向上移動(dòng)到點(diǎn),設(shè),則的長(zhǎng)可以表示為(

)A. B. C. D.【變式2】(2022·河北唐山·統(tǒng)考三模)如圖,點(diǎn)O為的內(nèi)心,,,點(diǎn)M,N分別為,上的點(diǎn),且.甲、乙、丙三人有如下判斷:甲:;乙:四邊形的面積為定值;丙:當(dāng)時(shí),的周長(zhǎng)有最小值.則下列說法正確的是()A.只有甲正確 B.只有乙錯(cuò)誤C.乙、丙都正確 D.只有丙錯(cuò)誤【變式3】(2023·浙江溫州·校聯(lián)考模擬預(yù)測(cè))甲、乙兩幢完全一樣的房子如圖1,小聰與弟弟住在甲幢,為測(cè)量對(duì)面的乙幢屋頂斜坡M,N之間的距離,制定如下方案:兩幢房子截面圖如圖2,,小聰在離屋檐A處3m的點(diǎn)G處水平放置平面鏡(平面鏡的大小忽略不計(jì)),弟弟在離點(diǎn)G水平距離3m的點(diǎn)H處恰好在鏡子中看到乙幢屋頂N,此時(shí)測(cè)得弟弟眼睛與鏡面的豎直距離.下樓后,弟弟直立站在處,測(cè)得地面點(diǎn)F與E,M,N在一條直線上,,,,則甲、乙兩幢間距_________m,乙幢屋頂斜坡M,N之間的距離為_____________m.【變式4】(2023·浙江金華·校考一模)金華新金婺大橋是華東第一的獨(dú)塔斜拉橋,如圖1是新金婺大橋的效果圖.2022年4月13日開始主塔吊裝作業(yè).如圖2,我們把吊裝過程抽象成如下數(shù)學(xué)問題:線段為主塔,在離塔頂10米處有一個(gè)固定點(diǎn)米.在東西各拉一根鋼索和,已知等于214米.吊裝時(shí),通過鋼索牽拉,主塔由平躺橋面的位置,繞點(diǎn)O旋轉(zhuǎn)到與橋面垂直的位置.中午休息時(shí),此時(shí)一名工作人員在離M米的B處,在位于B點(diǎn)正上方的鋼索上A點(diǎn)處掛彩旗.正好是他的身高米.(1)主塔的高度為_____米,(精確到整數(shù)米)(2)吊裝過程中,鋼索也始終處于拉直狀態(tài),因受場(chǎng)地限制和安全需要,與水平橋面的最大張角在到之間即,的取值范圍是_____.(注:,).【變式5】(2023·廣西河池·??家荒#┤鐖D,一艘漁船位于小島B的北偏東方向,距離小島40nmile的點(diǎn)A處,它沿著點(diǎn)A的南偏東的方向航行.(1)漁船航行多遠(yuǎn)距離小島B最近(結(jié)果保留根號(hào))?(2)漁船到達(dá)距離小島B最近點(diǎn)后,按原航向繼續(xù)航行nmile到點(diǎn)C處時(shí)突然發(fā)生事故,漁船馬上向小島B上的救援隊(duì)求救,問救援隊(duì)從B處出發(fā)到達(dá)事故地點(diǎn)的最短航程是多少nmile(結(jié)果保留根號(hào))?核心考點(diǎn)五三角函數(shù)的綜合例1(2021·黑龍江·統(tǒng)考中考真題)如圖,在正方形中,對(duì)角線與相交于點(diǎn),點(diǎn)在的延長(zhǎng)線上,連接,點(diǎn)是的中點(diǎn),連接交于點(diǎn),連接,若,.則下列結(jié)論:①;②;③;④;⑤點(diǎn)D到CF的距離為.其中正確的結(jié)論是(

)A.①②③④ B.①③④⑤ C.①②③⑤ D.①②④⑤例2.(2021·四川眉山·統(tǒng)考中考真題)如圖,在菱形中,,對(duì)角線、相交于點(diǎn),點(diǎn)在線段上,且,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),則的最小值是______.例3(2022·山東濟(jì)寧·統(tǒng)考中考真題)知識(shí)再現(xiàn):如圖1,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的對(duì)邊分別為a,b,c.∵,∴,∴(1)拓展探究:如圖2,在銳角ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c.請(qǐng)?zhí)骄?,,之間的關(guān)系,并寫出探究過程.(2)解決問題:如圖3,為測(cè)量點(diǎn)A到河對(duì)岸點(diǎn)B的距離,選取與點(diǎn)A在河岸同一側(cè)的點(diǎn)C,測(cè)得AC=60m,∠A=75°,∠C=60°.請(qǐng)用拓展探究中的結(jié)論,求點(diǎn)A到點(diǎn)B的距離.【變式1】(2022·黑龍江哈爾濱·統(tǒng)考三模)如圖,折疊矩形的一邊,使點(diǎn)落在邊的點(diǎn)處,若,,則折痕()A. B. C.8 D.10【變式2】(2022·河南南陽(yáng)·統(tǒng)考三模)如圖,射線互相垂直,,點(diǎn)B位于射線的上方,且在線段的垂直平分線l上,連接,.將線段繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)得到對(duì)應(yīng)線段,若點(diǎn)恰好落在射線上,則點(diǎn)到射線的距離是(

)A. B. C.4 D.【變式3】(2022·江蘇揚(yáng)州·統(tǒng)考一模)如圖,在中,,.矩形DEFG的頂點(diǎn)D、E、F分別在邊BC、AC、AB上,若,則矩形EDFG面積的最大值=______.【變式4】(2022·江蘇蘇州·??家荒#纠斫飧拍睢慷x:如果三角形有兩個(gè)內(nèi)角的差為,那么這樣的三角形叫做“準(zhǔn)直角三角形”.(1)已知△ABC是“準(zhǔn)直角三角形”,且.①若,則______;②若,則______;【鞏固新知】(2)如圖①,在中,,點(diǎn)D在邊上,若是“準(zhǔn)直角三角形”,求的長(zhǎng);【解決問題】(3)如圖②,在四邊形中,,且是“準(zhǔn)直角三角形”,求的面積.【新題速遞】1.(2023·上海松江·統(tǒng)考一模)已知中,,,,那么下列結(jié)論正確的是(

)A. B. C. D.2.(2022秋·安徽安慶·九年級(jí)統(tǒng)考期中)已知為銳角,則的值(

)A.? B.? C.? D.?3.(2023春·九年級(jí)課時(shí)練習(xí))我們都知道蜂巢是很多個(gè)正六邊形組合來的.正六邊形蜂巢的建筑結(jié)構(gòu)密合度最高、用材最少、空間最大、也最為堅(jiān)固.如圖,某蜂巢的房孔是邊長(zhǎng)為6的正六邊形,若的內(nèi)接正六邊形為正六邊形,則的長(zhǎng)為(

)A.12 B. C. D.4.(2023秋·河北邯鄲·九年級(jí)??计谀┡d義市進(jìn)行城區(qū)規(guī)劃,工程師需測(cè)某樓的高度,工程師在D得用高的測(cè)角儀,測(cè)得樓頂端A的仰角為,然后向樓前進(jìn)到達(dá)E,又測(cè)得樓頂端A的仰角為,樓的高為(

)A. B. C. D.5.(2022秋·山東濟(jì)寧·九年級(jí)統(tǒng)考期末)如圖,由邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,點(diǎn)A,B,都在格點(diǎn)上,以為直徑的圓經(jīng)過點(diǎn),,則的值為(

)A. B. C. D.6.(2023秋·湖南邵陽(yáng)·九年級(jí)統(tǒng)考期末)如圖,在中,是的角平分線,如果,那么的值是(

)A. B. C. D.27.(2023秋·福建泉州·九年級(jí)統(tǒng)考期末)如圖,在等邊中,,垂足為,以,為鄰邊作矩形,連接交邊于點(diǎn),則的值為(

)A. B. C. D.8.(2023秋·湖北鄂州·九年級(jí)統(tǒng)考期末)正三角形的邊長(zhǎng)為,是邊上一動(dòng)點(diǎn),兩點(diǎn)關(guān)于直線對(duì)稱,連接并延長(zhǎng)交直線于,連接,在點(diǎn)運(yùn)動(dòng)過程中,的最大值是()A. B. C. D.9.(2023·全國(guó)·九年級(jí)專題練習(xí))如圖,直線與相切于點(diǎn),且,則________.10.(2023秋·吉林長(zhǎng)春·九年級(jí)統(tǒng)考期末)如圖,的頂點(diǎn)是正方形網(wǎng)格的格點(diǎn),則的值為__________.11.(2023秋·江蘇·九年級(jí)統(tǒng)考期末)如圖,中,,,點(diǎn)為的中點(diǎn),連接,的值為______.12.(2022秋·河南鄭州·九年級(jí)統(tǒng)考期末)如圖,折疊矩形的一邊,使點(diǎn)落在邊的點(diǎn)處,若,,則折痕______.13.(2023秋·貴州銅仁·九年級(jí)統(tǒng)考期末)如圖所示,某施工方計(jì)劃把一座山的,兩點(diǎn)用隧道打通,并利用北斗衛(wèi)星定位技術(shù)確定,,三點(diǎn)在東西方向的同一條直線上.在隧道沒有打通之前,技術(shù)監(jiān)督員李工每天需要駕車先從隧道口點(diǎn)向正西行駛到達(dá)點(diǎn),然后再沿南偏東方向行駛到達(dá)點(diǎn),接著再沿北偏東方向行駛一段路程才能到達(dá)隧道口,則隧道的長(zhǎng)度為______.14.(2023秋·河南平頂山·九年級(jí)統(tǒng)考期末)如圖,在菱形中,,,點(diǎn)E為邊的中點(diǎn),點(diǎn)F為邊上一動(dòng)點(diǎn),連接,把沿所在直線折疊,得到,連接,,當(dāng)為直角三角形時(shí),線段的長(zhǎng)為______.15.(2023春·湖北省直轄縣級(jí)單位·九年級(jí)校聯(lián)考階段練習(xí))計(jì)算:.16.(2023春·河南鄭州·九年級(jí)河南省實(shí)驗(yàn)中學(xué)校考階段練習(xí))某校安裝了紅外線體溫檢測(cè)儀(如圖1),該設(shè)備通過探測(cè)人體紅外輻射能量對(duì)進(jìn)入測(cè)溫區(qū)域的人員進(jìn)行快速測(cè)溫,其紅外線探測(cè)點(diǎn)O可以在垂直于地面的支桿上下調(diào)節(jié)(如圖2),探測(cè)最大角()為,探測(cè)最小角()為,已知該設(shè)備在支桿上下調(diào)節(jié)時(shí),探測(cè)最大角及最小角始終保持不變.若要求測(cè)溫區(qū)域的寬度為2.53米,請(qǐng)你幫助學(xué)校確定該設(shè)備的安裝高度.(結(jié)果精確到0.01米,參考數(shù)據(jù):,,,,,)17.(2023秋·湖北隨州·九年級(jí)統(tǒng)考期末)如圖,內(nèi)接于⊙,是⊙的直徑,切⊙于點(diǎn)B,E為上一點(diǎn),且,延長(zhǎng)交于點(diǎn)D.(1)求證:;(2)若⊙的半徑為5,,求的長(zhǎng).18.(2023·江蘇宿遷·統(tǒng)考一模)如圖,梯形是某水壩的橫截面示意圖,其中,壩頂,壩高,迎水坡的坡度為.(1)求壩底的長(zhǎng);(2)為了提高堤壩防洪抗洪能力,防汛指揮部決定在背水坡加固該堤壩,要求壩頂加寬,背水坡坡角改為.求加固總長(zhǎng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論