集成平面光波導(dǎo)器件_第1頁(yè)
集成平面光波導(dǎo)器件_第2頁(yè)
集成平面光波導(dǎo)器件_第3頁(yè)
集成平面光波導(dǎo)器件_第4頁(yè)
集成平面光波導(dǎo)器件_第5頁(yè)
已閱讀5頁(yè),還剩48頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江大學(xué)光電信息系1集成平面光波導(dǎo)器件

主講教師:戴道鋅

教授

Email:

dxdai@

Tel:

0571‐88206516‐215主頁(yè):/personnelCard/dxdai浙江大學(xué)光電信息系2提綱1.

課程組介紹;2.

課程簡(jiǎn)介;3.

集成平面光波導(dǎo)器件;浙江大學(xué)光電信息系31.

課程組介紹浙江大學(xué)光電信息系41.1.

教學(xué)組

戴道鋅

Email:

dxdai@

地址:

東五教學(xué)樓光及電磁

波研究中心215房間時(shí)堯成Email:

yaocheng@地址:

東五教學(xué)樓光及電磁波研究中心113房間浙江大學(xué)光電信息系9More

information:

/dxdai/0.html浙江大學(xué)光電信息系10Publication

list浙江大學(xué)光電信息系15

15

集成光電子實(shí)驗(yàn)室>2000m2實(shí)驗(yàn)大樓(含500m2超凈室);>4000萬(wàn)元實(shí)驗(yàn)儀器設(shè)備;浙江大學(xué)光電信息系162.

課程簡(jiǎn)介浙江大學(xué)光電信息系17課程概況

2學(xué)分:

32學(xué)時(shí)理論;

秋學(xué)期共8周的課程安排;浙江大學(xué)光電信息系18教學(xué)目的與基本要求

系統(tǒng)、深入地開(kāi)展“集成平面光波導(dǎo)器件”教學(xué),使研究生對(duì)

平面光波導(dǎo)的理論基礎(chǔ)、核心集成光波導(dǎo)器件機(jī)制原理有全

面深刻的理解;

掌握集成平面光波導(dǎo)器件的設(shè)計(jì)思路與方法。

鑒于集成光波導(dǎo)器件是當(dāng)前研究熱點(diǎn),本課程還將結(jié)合該領(lǐng)

域的發(fā)展歷程、最新進(jìn)展,激發(fā)學(xué)生對(duì)創(chuàng)新研究的興趣和熱

忱,培養(yǎng)學(xué)生分析問(wèn)題和邏輯思維能力,促進(jìn)學(xué)生對(duì)學(xué)科發(fā)

展和學(xué)科方向的全局視野能力。浙江大學(xué)光電信息系191.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.主要內(nèi)容及學(xué)時(shí)分配

導(dǎo)論:介紹課程內(nèi)容、集成平面光波導(dǎo)器件的發(fā)展歷史、現(xiàn)狀以及展望;

平面光波導(dǎo)理論:模式求解與特性分析;

硅納米線(xiàn)光波導(dǎo);

新型耦合器件與原理I;

新型耦合器件與原理II;

陣列波導(dǎo)光柵器件與應(yīng)用;

光學(xué)微腔原理;

光學(xué)微腔應(yīng)用;

波導(dǎo)光柵及應(yīng)用;

光子晶體波導(dǎo)及器件;

Plasmonic波導(dǎo)及器件;

文獻(xiàn)閱讀presentation;

可調(diào)諧型集成平面光波導(dǎo)器件及機(jī)理;

光波導(dǎo)調(diào)制器;

基于平面光波導(dǎo)器件的片上光系統(tǒng)與網(wǎng)絡(luò);

復(fù)習(xí)與答疑;浙江大學(xué)光電信息系20文獻(xiàn)閱讀‐Selected

Topics

Mode

MUXer

technology,

Graphene

on

waveguides,

On‐chip

optical

force,

Active

polymer

photonics

(e.g.,

Quantum

Dots),

Plasmonic

waveguides.

浙江大學(xué)光電信息系21教材與參考文獻(xiàn)

教材

《微納光子集成》

何賽靈,戴道鋅.

科學(xué)出版社

參考書(shū)

《半導(dǎo)體導(dǎo)波光學(xué)器件理論及技術(shù)》,趙策洲,國(guó)防工業(yè)出版社。

Robert

G.

Hunsperger.

Integrated

Optics:

Theory

and

Technology

(Sixth

Edition),

ISBN

978‐0‐387‐89775‐2

(Online),

Springer

Link

2009.

《光集成器件》,小林功郎著,科學(xué)出版社,2002

《集成光學(xué)》,T.

塔米爾主編,科學(xué)出版社,1982浙江大學(xué)光電信息系22第1章.集成平面光波導(dǎo)器件導(dǎo)論浙江大學(xué)光電信息系23Motivation

for

integrated

photonics

Transmission

and

processing

of

signals

Laser

invented

in

1960s

stable

source

of

coherent

light;Free

space

light

transmission?

but

atmospheric

variations.

Signal

processing

various

components:

prisms,

lenses,

mirrors,

electro‐optic

modulators

and

detectors.1.

All

of

this

equipment

would

typically

occupy

a

laboratory

bench

tens

of

feet

on

a

side,

which

must

be

suspended

on

a

vibration‐proof

mount.2.

Such

a

system

is

tolerable

for

laboratory

experiments,

but

is

not

very

useful

in

practical

applications浙江大學(xué)光電信息系24Integrated

optics

/

photonics

Optical

integrated

circuits

(OIC’s)

or

Photonic

integrated

circuits

(PIC’s)

S.E.

Miller

in

1969

(/wiki/Stewart_E._Miller)The

integrated

optics

approach

to

signal

transmission

and

processing

offers

significant

advantages

in

both

performance

and

cost

when

compared

to

conventional

electrical

methods.

物美價(jià)廉浙江大學(xué)光電信息系25

Stewart

E.

MillerStewart

E.

Miller

(

09/01/1918

‐02/27/1990)

was

a

noted

American

pioneer

in

microwave

and

optical

communications.Miller

was

born

in

Milwaukee,

Wisconsin.

In

1941

he

receive

his

S.B.

and

S.M.

degrees

in

engineering

at

MIT.

He

joined

Bell

Labs

to

work

on

microwave

radar,

and

became

technical

lead

for

the

B‐29's

X‐band

(3

cm)

radar

microwave

plumbing.

After

World

War

II,

he

was

instrumental

in

AT&T's

L‐3

coaxial

cable

carrier

systems,

then

transferred

to

the

Radio

Research

Department

where

he

made

advances

in

many

millimeter‐wave

components.In

the

early

1960s,

Miller

was

the

first

to

recognize

the

potential

of

optical

communications

and

as

director

of

Guided

Wave

Research,

initiated

a

program

to

investigate

a

variety

of

periodic

lens

systems.

As

optical

fiber

was

developed

in

the

late

1960s,

he

demonstrated

its

utility,

and

also

proposed

the

combining

multiple

optical

components

on

one

semiconductor

chip.

He

became

director

of

Lightwave

Research

in

1980,

retired

in

1983,

and

then

consulted

at

Bellcore

(now

Telcordia

Technologies)

analyzing

semiconductor

lasers.Miller

held

some

80

patents

and

was

a

member

of

the

National

Academy

of

Engineering,

a

Life

Fellow

of

the

IEEE,

and

a

Fellow

of

the

American

Association

for

the

Advancement

of

Science

and

the

Optical

Society

of

America.

He

received

the

Naval

Ordnance

Development

Award

in

1945,

the

1972

IEEE

Morris

N.

LiebmannMemorial

Award,

the

1975

IEEE

W.R.G.

Baker

Prize

(with

TingyeLi

and

E.A.J.

Marcatili),

the

Franklin

Institute's

1977

Stuart

Ballantine

Medal,

and

the

1989

John

Tyndall

Award

of

the

IEEE

Lasers

and

Electro‐Optics

Societyfor

distinguished

contributions

to

fiber

optics

technology.浙江大學(xué)光電信息系262013

Dr.

James

J.

Coleman

2012

John

E

Bowers2011

David

F.

Welch

2010

Dr.

C.

Randy

Giles

2009

Dr.

Joe

Charles

Campbell

2008

Robert

Tkach2007

Emmanuel

Desurvire2006

Dr.

Donald

Ray

Scifres2005

Roger

H.

Stolen

2004

Larry

A.

Coldren2003

Dr.

Andrew

R.

Chraplyvy2002

Neal

S.

Bergano2001

Tatsuo

Izawa

2000

Dr.

Stewart

D.

Personick1999

John

B.

MacChesney1998

Dr.

Kenichi

Iga1997

Prof.

Ivan

P.

Kaminow1996

Dr.

Kenneth

O.

Hill

1995

Dr.

TingyeLi1994

Dr.

Elias

Snitzer1993

Prof.

Yasuharu

Suematsu1992

Dr.

Donald

B.

Keck1991

Dr.

David

Neil

Payne1990

Thomas

G.

Giallorenzi1989

Stewart

Edward

Miller1988

Dr.

Michael

K

BarnoskiJohn

Tyndall

Award

1987

Robert

D.

Maurerwho

has

made

pioneering,

highly

significant,

or

continuing

technical

or

leadershipcontributions

to

fiber

optics

technology浙江大學(xué)光電信息系27Advantages

of

Integrated

OpticsMany

channels

multiplexed

Huge

capacity28Advantages

of

Photonics

(VS

electronics)

Immunity

from

electromagnetic

interference

(EMI)

Freedom

from

electrical

short

circuits

or

ground

loops

Safety

in

combustible

environment

Security

from

monitoring

Low‐loss

transmission

Large

bandwidth

(i.e.,

multiplexing

capability)

Small

size,

light

weight

Inexpensive,

composed

of

plentiful

materials

Major

disadvantage:

Difficult

to

use

for

electrical

power

transmission浙江大學(xué)光電信息系浙江大學(xué)光電信息系29PICs

capability

of

transmitting

fiberPICs

the

ability

to

generate

and

process

them

Advantages

Increased

bandwidthExpanded

frequency

(wavelength)

division

multiplexingLow-loss

couplers,

including

bus

access

typesExpanded

multi-path

switchingSmaller

size,

weight,

lower

power

consumption

Batch

fabrication

economy

Improved

reliability

Improved

optical

alignment,

immunity

to

vibrationMajor

disadvantage

High

cost

of

developing

new

fabrication

technologyIntegrationPhotonics浙江大學(xué)光電信息系30In

1970s,

what

happened?to

bring

integrated

optics

out

of

the

laboratory

and

into

the

realm

of

practicalapplication

Three

main

factors:

A.

Low

loss

optical

fibers

and

connectors

(Demands),

B.

Reliable

CW

GaAlAs

and

GaInAsP

laser

diodes

(Sources),

C.

Photolithographic

microfabrication

techniques

capable

of

submicron

linewidths

(Feasibility)浙江大學(xué)光電信息系A(chǔ).

Low‐loss

optical

fibers高錕,生于中國(guó)上海,光纖通訊、電機(jī)工程專(zhuān)家,華文媒體譽(yù)之為“光纖之父”、普世譽(yù)之為“光纖通訊之父”(Father

of

Fiber

Optic

Communications),曾任香港中文大學(xué)校長(zhǎng)。2009年,與威拉德?博伊爾和喬治?埃爾伍德?史密斯共享諾貝爾物理學(xué)獎(jiǎng)。

31Kao,

C.K.,

"1012

bit/s

Optoelectronics

Technology",

IEE

Proceedings,

133(3):

230‐236,

June

1986.

浙江大學(xué)光電信息系

32K.C.

Kao’s

workKao,

K.C.

and

Hockham,

G.A.,

“Dielectric‐fibre

Surface

Waveguides

for

Optical

Frequencies”,

Proc.

IEE.

113(7):

1151‐1158,

July

1966.

Kao,

K.C.

and

Davies,

T.W.,

"Spectrophotometric

Studies

of

Ultra

Low

Loss

Optical

Glasses

I:

Single

Beam

Method",

Journal

of

Scientific

Instruments

(Journal

of

Physics

E),

Series

2,

1:

1063‐1068,

1968.

舉世公認(rèn)高錕是提出用纖維材料傳達(dá)光束訊號(hào)以建置通信的第一人。當(dāng)時(shí),大家已知道可用數(shù)字或模擬的方式傳送訊息,已有人研究:透過(guò)氣體或玻璃傳送光,期望可達(dá)到高速傳輸,但無(wú)法克服嚴(yán)重衰減的問(wèn)題。1965年,高錕對(duì)各種非導(dǎo)體纖維進(jìn)行仔細(xì)的實(shí)驗(yàn)。按他分析,當(dāng)光學(xué)訊號(hào)衰減率能低于20dB/km時(shí),光纖通信便可行。他更進(jìn)一步分析了吸收、散射、彎曲等因素,推論被包覆的石英基玻璃有可能滿(mǎn)足衰減需求。這項(xiàng)關(guān)鍵研究結(jié)果,推動(dòng)全球光纖通訊的研發(fā)工作。1966年,高錕發(fā)表了一篇題為《光頻率介質(zhì)纖維表面波導(dǎo)》的論文,開(kāi)創(chuàng)性地提出光導(dǎo)纖維在通信上應(yīng)用的基本原理,描述了長(zhǎng)程及高信息量光通信所需絕緣性纖維的結(jié)構(gòu)和材料特性。簡(jiǎn)單地說(shuō),只要解決好玻璃純度和成分等問(wèn)題,就能夠利用玻璃制作光學(xué)纖維,從而高效傳輸信息。這一設(shè)想提出之后,有人稱(chēng)之為匪夷所思,也有人對(duì)此大加褒揚(yáng)。但在爭(zhēng)論中,高錕的設(shè)想逐步變成現(xiàn)實(shí):利用石英玻璃制成的光纖應(yīng)用越來(lái)越廣泛,全世界掀起了一場(chǎng)光纖通信的革命。浙江大學(xué)光電信息系33衡特性等多個(gè)領(lǐng)域都作了成果都是使信號(hào)在無(wú)放大接纖,至1976年則達(dá)K.C.

Kao’s

work

高錕還開(kāi)發(fā)了實(shí)現(xiàn)光纖通

訊所需的輔助性子系統(tǒng):

據(jù)Kao’s理論,Corning

公司R.

D.

Maurer等人1970年首次

在單模纖維的構(gòu)造、纖維

的強(qiáng)度和耐久性、纖維連

光器和耦合器以及擴(kuò)散均

到1

dB/km的水平,為日后光纖通訊

技術(shù)的飛速發(fā)展奠定了理論基礎(chǔ)。

大量的研究,而這些研究

80年代,光纖通信技術(shù)在發(fā)達(dá)國(guó)家得到了廣泛推廣應(yīng)用。

的條件下,以高速長(zhǎng)距離

通信的關(guān)鍵。34Low

loss

optical

fiber

connectors

PC

FC:

Ferrule

contactor

(鋼制金屬套筒)

;

PC:

Physical

contact,

RL~‐30dB;

SPC:

Super

PC,

RL~‐40dB;

UPC:

Ultra

PC,

RL~‐50dB;

APC:

Angled

PC,

RL~‐60dB;

PC:

藍(lán)色;APC:綠色;/fiber‐optic‐tutorial‐termination.aspx

浙江大學(xué)光電信息系浙江大學(xué)光電信息系35the

most

common

fiber

optic

connectors

ST

(an

AT&T

Trademark)

is

the

most

popular

connector

for

multimode

networksFC/PC

has

been

one

of

the

most

popular

singlemode

connectors

for

many

years

SC

is

a

snap‐in

connector

that

is

widely

used

in

singlemodesystems

for

it's

excellent

performance

LC

is

a

new

connector

that

uses

a

1.25

mm

ferrule,

half

the

size

of

the

STMT‐RJ

is

a

duplex

connector

with

both

fibers

in

a

single

polymer

ferrule

Opti‐Jack

is

a

neat,

rugged

duplex

connector

Volition

is

a

slick,

inexpensive

duplex

connector

that

uses

no

ferrule

at

all

E2000/LX‐5

is

like

a

LC

but

with

a

shutter

over

the

end

of

the

fiber

MU

looks

a

miniature

SC

with

a

1.25

mm

ferrule.

It's

more

popular

in

Japan.MT

is

a

12

fiber

connector

for

ribbon

cable.

It's

main

use

is

for

preterminated

cable

assemblies.

浙江大學(xué)光電信息系36

B.

Reliable

CW

GaAlAs

and

GaInAsP

laser

diodes

Basov

and

Javan

proposed

the

semiconductor

laser

diode

concept.

In

1962,

Robert

N.

Hall

demonstrated

the

first

laser

diode

device,

made

of

gallium

arsenide

and

emitted

at

850

nm

the

near‐infrared

band

of

the

spectrum.

Later,

in

1962,

Nick

Holonyak,

Jr.

demonstrated

the

first

semiconductor

laser

with

a

visible

emission.

This

first

semiconductor

laser

could

only

be

used

in

pulsed‐beam

operation,

and

when

cooled

to

liquid

nitrogen

temperatures

(77

K).

In

1970,

Zhores

Alferov,

in

the

USSR

(Union

of

Soviet

Socialist

Republics

),

and

Izuo

Hayashi

and

Morton

Panish

of

Bell

Telephone

Laboratories

also

independently

developed

room‐temperature,

continual‐operation

diode

lasers,

using

the

heterojunction

structure./wiki/Laser37Basov

and

Javan

proposed

the

semiconductor

laser

diode

concept.Nikolay

Gennadiyevich

Basov

(Russian;

12/14/1922‐07/01/2001)

was

a

Sovietphysicist

and

educator.

For

his

fundamental

work

in

the

field

of

quantum

electronics

that

led

to

the

development

of

laser

and

maser,

Basov

shared

the

1964

Nobel

Prize

in

Physics

with

Alexander

Prokhorov

and

Charles

Hard

Townes.Ali

Mortimer

Javan

(born

12/26/1926)

is

an

Iranian

American

physicist

and

inventorat

MIT.

His

main

contributions

to

science

have

been

in

the

fields

of

quantum

physicsand

spectroscopy.

He

co‐invented

the

gas

laser

in

1960,

with

William

R.

Bennett.

Ali

Javan

has

been

ranked

Number

12

on

the

list

of

the

Top

100

living

geniuses.浙江大

MicrowaveLaser:

Light

Amplification

by

Stimulated

Emission

of

Radiation;Maser:

學(xué)光電信息系

Amplification

by

Stimulated

Emission

of

Radiation浙江大學(xué)光電信息系38First

helium‐neon

laser,

1960.First

helium‐neon

laser.

Left

to

right:

US

physicist

Donald

R.

Herriott

(1928‐2007),

Iranian‐US

physicist

Ali

Mortimer

Javan

(born

1926)

and

US

physicist

William

R.

Bennett

(1930‐2008),

with

the

first

helium‐neon

laser.

/media/147086/enlarge浙江大學(xué)光電信息系39Heterojunction

structureHerbert

Kroemer

(born

08/25/1928),

a

professor

at

UC,

Santa

Barbara,

received

his

Ph.D.

in

theoretical

physics

in

1952

from

the

University

of

G?ttingen,

Germany,

with

a

dissertation

on

hot

electron

effects

in

the

then‐new

transistor,

setting

the

stage

for

a

career

in

research

on

the

physics

of

semiconductor

devices.

In

2000,

the

Nobel

Prize

in

physics

was

awarded

jointly

to

Herbert

Kroemer

(UC

Santa

Barbara,

USA)

and

Zhores

I.

Alferov

(Ioffe

Institute,

Saint

Petersburg,

Russia)

for

"developing

semiconductor

heterostructures

used

in

high‐speed‐

and

opto‐electronics"

Zhores

Ivanovich

Alferov

(Russian,

Belarusian;

born

03/15/1930)

is

a

Sovietand

Russian

physicist

and

academic

who

contributed

significantly

to

the

creation

of

modern

heterostructure

physics

and

electronics.

浙江大學(xué)光電信息系40C.

Microfabrication

techniques

depositing

a

film,

patterning

the

film

with

the

desired

micro

features,

and

removing

(or

etching)

portions

of

the

film.For

memory

chip

fabrication:

~30

lithography

steps,

~10

oxidation

steps,

~20

etching

steps,

~10

doping

steps,

and

many

others.浙江大學(xué)光電信息系41Comparison

of

sizes

of

semiconductor

manufacturing

process

nodeswith

some

microscopic

objects

and

visible

light

wavelengths

Can

size

reduction

go

further?

Moore’s

law

might

expire.

Photonics

will

replace

electronics?

Optical

interconnects浙江大學(xué)光電信息系42

In

1980sOptical

fibers

largely

replaced

metallic

wires

in

telecommunications,A

number

of

manufacturers

began

production

of

PICs

for

use

in

a

variety

of

applications浙江大學(xué)光電信息系43

In

1990sThe

incorporation

of

optical

fibers

into

telecommunications

and

data‐transmission

networks

has

been

extended

to

the

subscriber

loop

in

many

systems.

This

provides

an

enormous

bandwidth

for

multichannel

transmission

of

voice,

video

and

data

signals.

Access

to

worldwide

communications

and

data

banks

has

been

provided

by

computer

networks

such

as

the

Internet.

We

are

in

the

process

of

developing

what

some

have

called

the

“Information

superhighway.”

The

implementation

of

this

technology

has

provided

continuing

impetus

to

the

development

of

new

integrated

optic

devices

and

systems

into

the

beginning

years

of

the

21st

century.Another

technological

advance

that

has

encouraged

the

development

of

new

integrated

optic

devices

in

recent

years

is

the

availability

of

improved

fabrication

methods.

Microtechnology,

which

involves

dimensions

on

the

order

of

micrometers,

has

evolved

into

nanotechnology,

in

which

nanometer‐sized

features

are

routinely

produced.

This

new

area

of

nanophotonics,

which

includes

the

fabrication

of

photonic

crystals.浙江大學(xué)光電信息系44Material

for

PIC’s

Electronics

IC:

silicon,

For

PIC’s:

No

one

substrate

material

will

be

optimum

for

all

elements.

浙江大學(xué)光電信息系45Hybrid

Versus

Monolithic

Approach

Hybrid

two

or

more

substrate

materials

are

somehow

bonded

together

to

optimize

performance

for

different

devices;

Advantage:

using

existing

technology,

piecing

together

devices

which

have

been

substantially

optimized

in

a

given

material

Disadvantage:

misalignment,

or

even

failure,

because

of

vibration

and

thermal

expansion.

Monolithic

a

single

substrate

material

is

used

for

all

devices;

Advantage:

cheaper,

reliable.

浙江大學(xué)光電信息系46

III–V

and

II–VI

Ternary

SystemsFor

a

system:

light

emitter

+

waveguide

+

detector

The

energy

bandgap

of

the

material

can

be

changed

over

a

wide

range

by

altering

the

relative

concentrations

of

elements.

gallium

aluminum

arsenide,

Ga(1?x)AlxAs.

gallium

indium

arsenide

phosphide,

GaxIn(1?x)As(1?y)Py.浙江大學(xué)光電信息系47Silicon

is

cheaper

than

other

semiconductors浙江大學(xué)光電信息系48浙江大學(xué)光電信息系49

Silicon

photonicsA

new

technology

platform

to

enable

low

cost

and

high

performance

photonics

Low‐cost

because

of

the

CMOS‐compatible

fabrication

processes

(Photonic

devices

produced

within

standard

silicon

factory

and

with

standard

silicon

processing);

Low‐loss

waveguides;

Ultra‐high

index

contrast

enables

ultra‐sharp

bending,

ultrasmall

devices

size.

However,

for

active

devices

(lasers,

modulators,

photodetectors),

what

is

the

solution?

There

are

several

promising

approaches

for

these

issues.

50

Silicon

photonicsIn

the

last

few

years,

silicon

has

become

an

important

material

for

integrated

photonics

with

several

breakthroughs

in

the

field

of

high‐speed

optical

modulators,

integrated

germanium

detectors

and

even

light

sources.

High‐contrast

silicon

on

insulator

(SOI)

waveguides

allow

to

miniaturize

photonic

functions,

which

enables

larger‐scale

integration

for

photonics.

The

resulting

ultra‐compact

photonic

integrated

circuits

can

be

used

for

telecom,

datacom,

(bio)‐sensing,

and

biomedical

applications.

The

CMOS

compatible

processing

requirements

allow

the

reuse

of

the

huge

technology

base

for

submicron

mass‐fabrication.

浙江大學(xué)光電信息系http://www.imec.be/ScientificReport/SR2008/HTML/1224982.html浙江大學(xué)光電信息系51What

is

driving

silicon

photonics?

Data‐com,

super‐computing浙江大學(xué)光電信息系52Optical

communication

network

(scaling

down)

Short‐distanceThe

fiber

to

the

home

Long‐haul

(WDM

+

EDFA)New

services:

high‐sp

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論