浙江省杭州市翠苑中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
浙江省杭州市翠苑中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
浙江省杭州市翠苑中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
浙江省杭州市翠苑中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
浙江省杭州市翠苑中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省杭州市翠苑中學(xué)2024年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.-3的倒數(shù)是()A.3 B.13 C.-12.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:23.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃4.若代數(shù)式的值為零,則實(shí)數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠35.一個(gè)不透明的布袋里裝有5個(gè)只有顏色不同的球,其中2個(gè)紅球、3個(gè)白球.從布袋中一次性摸出兩個(gè)球,則摸出的兩個(gè)球中至少有一個(gè)紅球的概率是()A. B. C. D.6.某服裝店用10000元購(gòu)進(jìn)一批某品牌夏季襯衫若干件,很快售完;該店又用14700元錢購(gòu)進(jìn)第二批這種襯衫,所進(jìn)件數(shù)比第一批多40%,每件襯衫的進(jìn)價(jià)比第一批每件襯衫的進(jìn)價(jià)多10元,求第一批購(gòu)進(jìn)多少件襯衫?設(shè)第一批購(gòu)進(jìn)x件襯衫,則所列方程為()A.﹣10= B.+10=C.﹣10= D.+10=7.在平面直角坐標(biāo)系中,將拋物線繞著它與軸的交點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是().A. B.C. D.8.如圖,在△ABC中,點(diǎn)D是邊AB上的一點(diǎn),∠ADC=∠ACB,AD=2,BD=6,則邊AC的長(zhǎng)為()A.2 B.4 C.6 D.89.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長(zhǎng)為()A. B. C. D.10.如圖是由5個(gè)大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.計(jì)算:+=______.12.若實(shí)數(shù)a、b、c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖,則化簡(jiǎn):2|a+c|++3|a﹣b|=_____.13.某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是___歲.14.一個(gè)正多邊形的一個(gè)內(nèi)角是它的一個(gè)外角的5倍,則這個(gè)多邊形的邊數(shù)是_______________15.布袋中裝有2個(gè)紅球和5個(gè)白球,它們除顏色外其它都相同.如果從這個(gè)布袋里隨機(jī)摸出一個(gè)球,那么所摸到的球恰好為紅球的概率是

________.16.一組數(shù):2,1,3,,7,,23,…,滿足“從第三個(gè)數(shù)起,前兩個(gè)數(shù)依次為、,緊隨其后的數(shù)就是”,例如這組數(shù)中的第三個(gè)數(shù)“3”是由“”得到的,那么這組數(shù)中表示的數(shù)為______.三、解答題(共8題,共72分)17.(8分)如圖1,已知直線l:y=﹣x+2與y軸交于點(diǎn)A,拋物線y=(x﹣1)2+m也經(jīng)過點(diǎn)A,其頂點(diǎn)為B,將該拋物線沿直線l平移使頂點(diǎn)B落在直線l的點(diǎn)D處,點(diǎn)D的橫坐標(biāo)n(n>1).(1)求點(diǎn)B的坐標(biāo);(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點(diǎn)C,且點(diǎn)C的橫坐標(biāo)為a.①請(qǐng)寫出a與n的函數(shù)關(guān)系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.18.(8分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點(diǎn),以P為圓心,PB為半徑的⊙P與邊BC的另一個(gè)交點(diǎn)為D,聯(lián)結(jié)PD、AD.(1)求△ABC的面積;(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長(zhǎng).19.(8分)為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的對(duì)象必須選擇而且只能在四種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學(xué)生;請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為P(2,9),與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C(0,5).(Ⅰ)求二次函數(shù)的解析式及點(diǎn)A,B的坐標(biāo);(Ⅱ)設(shè)點(diǎn)Q在第一象限的拋物線上,若其關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q′也在拋物線上,求點(diǎn)Q的坐標(biāo);(Ⅲ)若點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,使得以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,且AC為其一邊,求點(diǎn)M,N的坐標(biāo).21.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達(dá)式;(2)求證:點(diǎn)C為線段AP的中點(diǎn);(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,說明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.22.(10分)如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).(1)求n的值和拋物線的解析式;(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).23.(12分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長(zhǎng).24.如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數(shù).小明發(fā)現(xiàn)OE平分∠BOC,請(qǐng)你通過計(jì)算說明道理.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C2、D【解析】

依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設(shè)AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點(diǎn)睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長(zhǎng)線)相交的直線,所截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例.3、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個(gè)實(shí)際問題可轉(zhuǎn)化為減法運(yùn)算,列算式計(jì)算即可.【詳解】3-(-4)=3+4=7℃.

故選B.4、A【解析】

根據(jù)分子為零,且分母不為零解答即可.【詳解】解:∵代數(shù)式的值為零,∴x=0,此時(shí)分母x-3≠0,符合題意.故選A.【點(diǎn)睛】本題考查了分式的值為零的條件.若分式的值為零,需同時(shí)具備兩個(gè)條件:①分子的值為0,②分母的值不為0,這兩個(gè)條件缺一不可.5、D【解析】

畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個(gè)紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個(gè)球中至少有一個(gè)紅球的有14種情況,因此兩個(gè)球中至少有一個(gè)紅球的概率是:.故選:D.【點(diǎn)睛】此題考查了列表法與樹狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.6、B【解析】

根據(jù)題意表示出襯衫的價(jià)格,利用進(jìn)價(jià)的變化得出等式即可.【詳解】解:設(shè)第一批購(gòu)進(jìn)x件襯衫,則所列方程為:+10=.故選B.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出分式方程,正確找出等量關(guān)系是解題關(guān)鍵.7、B【解析】

把拋物線y=x2+2x+3整理成頂點(diǎn)式形式并求出頂點(diǎn)坐標(biāo),再求出與y軸的交點(diǎn)坐標(biāo),然后求出所得拋物線的頂點(diǎn),再利用頂點(diǎn)式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點(diǎn)坐標(biāo)為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點(diǎn)坐標(biāo)為(0,3),

∵拋物線繞與y軸的交點(diǎn)旋轉(zhuǎn)180°,

∴所得拋物線的頂點(diǎn)坐標(biāo)為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點(diǎn)的變化確定函數(shù)解析式的變化可以使求解更簡(jiǎn)便.8、B【解析】

證明△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)可推導(dǎo)得出AC2=AD?AB,由此即可解決問題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、解題的關(guān)鍵是正確尋找相似三角形解決問題.9、D【解析】

延長(zhǎng)BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【詳解】解:延長(zhǎng)BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點(diǎn)睛】此題綜合運(yùn)用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.10、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點(diǎn):簡(jiǎn)單組合體的三視圖.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】

利用同分母分式加法法則進(jìn)行計(jì)算,分母不變,分子相加.【詳解】解:原式=.【點(diǎn)睛】本題考查同分母分式的加法,掌握法則正確計(jì)算是本題的解題關(guān)鍵.12、﹣5a+4b﹣3c.【解析】

直接利用數(shù)軸結(jié)合二次根式、絕對(duì)值的性質(zhì)化簡(jiǎn)得出答案.【詳解】由數(shù)軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.【點(diǎn)睛】此題主要考查了二次根式以及絕對(duì)值的性質(zhì),正確化簡(jiǎn)是解題關(guān)鍵.13、1.【解析】

根據(jù)中位數(shù)的定義找出第20和21個(gè)數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學(xué),∴這個(gè)班同學(xué)年齡的中位數(shù)是第20和21個(gè)數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個(gè)班同學(xué)年齡的中位數(shù)是1歲.【點(diǎn)睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關(guān)鍵.14、1【解析】

設(shè)這個(gè)正多邊的外角為x°,則內(nèi)角為5x°,根據(jù)內(nèi)角和外角互補(bǔ)可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數(shù)可得邊數(shù).【詳解】設(shè)這個(gè)正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【點(diǎn)睛】此題主要考查了多邊形的內(nèi)角和外角,關(guān)鍵是計(jì)算出外角的度數(shù),進(jìn)而得到邊數(shù).15、2【解析】試題解析:∵一個(gè)布袋里裝有2個(gè)紅球和5個(gè)白球,∴摸出一個(gè)球摸到紅球的概率為:22+5考點(diǎn):概率公式.16、-9.【解析】

根據(jù)題中給出的運(yùn)算法則按照順序求解即可.【詳解】解:根據(jù)題意,得:,.故答案為:-9.【點(diǎn)睛】本題考查了有理數(shù)的運(yùn)算,理解題意、弄清題目給出的運(yùn)算法則是正確解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】

1)首先求得點(diǎn)A的坐標(biāo),再求得點(diǎn)B的坐標(biāo),用h表示出點(diǎn)D的坐標(biāo)后代入直線的解析式即可驗(yàn)證答案。(2)①根據(jù)兩種不同的表示形式得到m和h之間的函數(shù)關(guān)系即可。②點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F,證得△ACE~△CDF,然后用m表示出點(diǎn)C和點(diǎn)D的坐標(biāo),根據(jù)相似三角形的性質(zhì)求得m的值即可?!驹斀狻拷猓海?)當(dāng)x=0時(shí)候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,該拋物線的解析式為:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴則平移后拋物線的解析式為:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是兩個(gè)拋物線的交點(diǎn),∴點(diǎn)C的縱坐標(biāo)可以表示為:(a﹣1)2+1或(a﹣n)2﹣n+2由題意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②過點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用和相似三角形的判定與性質(zhì),需綜合運(yùn)用各知識(shí)求解。18、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點(diǎn)A作AH⊥BC于點(diǎn)H,根據(jù)cosB=求得BH的長(zhǎng),從而根據(jù)已知可求得AH的長(zhǎng),BC的長(zhǎng),再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據(jù),代入相關(guān)的量即可得;(3)分情況進(jìn)行討論即可得.試題解析:(1)過點(diǎn)A作AH⊥BC于點(diǎn)H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長(zhǎng)線于E,可得cos∠CAE=,①當(dāng)∠ADP=90°時(shí),cos∠APD=cos∠CAE=,即,解得x=;②當(dāng)∠PAD=90°時(shí),,解得x=,綜上所述,PB=或.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、底在同一直線上且高相等的三角形面積的關(guān)系等,結(jié)合圖形及已知選擇恰當(dāng)?shù)闹R(shí)進(jìn)行解答是關(guān)鍵.19、(1)200;(2)答案見解析;(3).【解析】

(1)由題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);(2)根據(jù)題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數(shù)為:200×30%=60(名);則可補(bǔ)全統(tǒng)計(jì)圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與一人是喜歡跳繩、一人是喜歡足球的學(xué)生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據(jù)題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);故答案為:200;(2)C組人數(shù):200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學(xué)生,D表示1名喜歡足球的學(xué)生;

畫樹狀圖得:∵共有12種等可能的結(jié)果,一人是喜歡跳繩、一人是喜歡足球的學(xué)生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】

(1)設(shè)頂點(diǎn)式,再代入C點(diǎn)坐標(biāo)即可求解解析式,再令y=0可求解A和B點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)Q(m,﹣m2+4m+5),則其關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q′(﹣m,m2﹣4m﹣5),再將Q′坐標(biāo)代入拋物線解析式即可求解m的值,同時(shí)注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對(duì)稱軸x=2于K,使MK=OC,分M點(diǎn)在對(duì)稱軸左邊和右邊兩種情況分類討論即可.【詳解】(Ⅰ)設(shè)二次函數(shù)的解析式為y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)設(shè)點(diǎn)Q(m,﹣m2+4m+5),則Q′(﹣m,m2﹣4m﹣5).把點(diǎn)Q′坐標(biāo)代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=或(舍棄),∴Q(,).(Ⅲ)如圖,作MK⊥對(duì)稱軸x=2于K.①當(dāng)MK=OA,NK=OC=5時(shí),四邊形ACNM是平行四邊形.∵此時(shí)點(diǎn)M的橫坐標(biāo)為1,∴y=8,∴M(1,8),N(2,13),②當(dāng)M′K=OA=1,KN′=OC=5時(shí),四邊形ACM′N′是平行四邊形,此時(shí)M′的橫坐標(biāo)為3,可得M′(3,8),N′(2,3).【點(diǎn)睛】本題主要考查了二次函數(shù)的應(yīng)用,第3問中理解通過平移AC可應(yīng)用“一組對(duì)邊平行且相等”得到平行四邊形.21、(1)y=24x+1.(2)點(diǎn)C為線段AP的中點(diǎn).(3)存在點(diǎn)D,使四邊形BCPD為菱形,點(diǎn)D【解析】試題分析:(1)由點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱,可得AO=BO,再由A的坐標(biāo)求得B點(diǎn)的坐標(biāo),從而求得點(diǎn)P的坐標(biāo),將P坐標(biāo)代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標(biāo)代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點(diǎn),使四邊形BCPD為菱形,過點(diǎn)C作CD平行于x軸,交PB于點(diǎn)E,交反比例函數(shù)y=-8試題解析:(1)∵點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數(shù)的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數(shù)的解析式:y=24x(2)∵點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱,∴OA=OB∵PB丄x軸于點(diǎn)B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點(diǎn)C為線段AP的中點(diǎn).(3)存在點(diǎn)D,使四邊形BCPD為菱形∵點(diǎn)C為線段AP的中點(diǎn),∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點(diǎn)C過點(diǎn)C作CD平行于x軸,交PB于點(diǎn)E,交反比例函數(shù)y=-8x的圖象于點(diǎn)分別連結(jié)PD、BD,∴點(diǎn)D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點(diǎn)D(8,1)即為所求.22、(1)n=2;y=x2﹣x﹣1;(2)p=;當(dāng)t=2時(shí),p有最大值;(3)6個(gè),或;【解析】

(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;

(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長(zhǎng)度,利用勾股定理列式求出AB的長(zhǎng),然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長(zhǎng)公式表示出p,利用直線和拋物線的解析式表示DE的長(zhǎng),整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問題解答;

(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,根據(jù)圖3、圖4兩種情形即可解決.【詳解】解:(1)∵直線l:y=x+m經(jīng)過點(diǎn)B(0,﹣1),∴m=﹣1,∴直線l的解析式為y=x﹣1,∵直線l:y=x﹣1經(jīng)過點(diǎn)C(4,n),∴n=×4﹣1=2,∵拋物線y=x2+bx+c經(jīng)過點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),∴,解得,∴拋物線的解析式為y=x2﹣x﹣1;(2)令y=0,則x﹣1=0,解得x=,∴點(diǎn)A的坐標(biāo)為(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y軸,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE?cos∠DEF=DE?=DE,DF=DE?sin∠DEF=DE?=DE,∴p=2(DF+EF)=2(+)DE=DE,∵點(diǎn)D的橫坐標(biāo)為t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴當(dāng)t=2時(shí),p有最大值.(3)“落點(diǎn)”的個(gè)數(shù)有6個(gè),如圖1,圖2中各有2個(gè),圖3,圖4各有一個(gè)所示.如圖3中,設(shè)A1的橫坐標(biāo)為m,則O1的橫坐標(biāo)為m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如圖4中,設(shè)A1的橫坐標(biāo)為m,則B1的橫坐標(biāo)為m+,B1的縱坐標(biāo)比例A1的縱坐標(biāo)大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋轉(zhuǎn)180°時(shí)點(diǎn)A1的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論