浙江省杭州蕭山回瀾重點中學(xué)2024屆中考數(shù)學(xué)模試卷含解析_第1頁
浙江省杭州蕭山回瀾重點中學(xué)2024屆中考數(shù)學(xué)模試卷含解析_第2頁
浙江省杭州蕭山回瀾重點中學(xué)2024屆中考數(shù)學(xué)模試卷含解析_第3頁
浙江省杭州蕭山回瀾重點中學(xué)2024屆中考數(shù)學(xué)模試卷含解析_第4頁
浙江省杭州蕭山回瀾重點中學(xué)2024屆中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省杭州蕭山回瀾重點中學(xué)2024屆中考數(shù)學(xué)模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣22.函數(shù)的圖像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.234.如圖,兩個等直徑圓柱構(gòu)成如圖所示的T形管道,則其俯視圖正確的是()A.B.C.D.5.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.46.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當(dāng)n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③7.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:98.已知平面內(nèi)不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣59.下列計算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a210.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°11.已知x=2﹣3,則代數(shù)式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣312.下列4個數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算(2a)3的結(jié)果等于__.14.我國古代《易經(jīng)》一書中記載,遠(yuǎn)古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.15.如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達(dá)C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km.16.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風(fēng)景區(qū)的點的坐標(biāo)為,表示慕田峪長城的點的坐標(biāo)為,則表示雁棲湖的點的坐標(biāo)為______.17..如圖,圓錐側(cè)面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.18.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點E.若△A'ED為直角三角形,則AD的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A,(1)求點A的坐標(biāo);(2)設(shè)x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.20.(6分)地下停車場的設(shè)計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設(shè)計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)21.(6分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.22.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.23.(8分)如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).(1)求一次函數(shù)的解析式;(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.24.(10分)某商場以每件30元的價格購進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數(shù)關(guān)系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數(shù)關(guān)系式.商場每天銷售這種商品的銷售利潤能否達(dá)到500元?如果能,求出此時的銷售價格;如果不能,說明理由.25.(10分)為弘揚中華優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》、《大學(xué)》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內(nèi)容進(jìn)行誦讀比賽.小禮誦讀《論語》的概率是;(直接寫出答案)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.26.(12分)當(dāng)前,“精準(zhǔn)扶貧”工作已進(jìn)入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學(xué)七年級共有四個班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.求七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);現(xiàn)從A1,A2中各選出一人進(jìn)行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.27.(12分)在“傳箴言”活動中,某班團(tuán)支部對該班全體團(tuán)員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:求該班團(tuán)員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團(tuán)委組織的“箴言”活動總結(jié)會,請你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.2、D【解析】

根據(jù)反比例函數(shù)中,當(dāng),雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大,進(jìn)而得出答案.【詳解】解:函數(shù)的圖象位于第四象限.故選:D.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確記憶反比例函數(shù)圖象分布的象限是解題關(guān)鍵.3、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.4、B【解析】試題分析:三視圖就是主視圖(正視圖)、俯視圖、左視圖的總稱.從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.故選B考點:三視圖5、A【解析】根據(jù)題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據(jù)題目的描述,可以判斷出這個幾何體應(yīng)該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.6、D【解析】

①利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當(dāng)n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當(dāng)每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.7、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.8、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標(biāo)的相關(guān)知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標(biāo)相等或互為相反數(shù).9、B【解析】

利用完全平方公式及平方差公式計算即可.【詳解】解:A、原式=a2-6a+9,本選項錯誤;

B、原式=a2-9,本選項正確;

C、原式=a2-2ab+b2,本選項錯誤;

D、原式=a2+2ab+b2,本選項錯誤,

故選:B.【點睛】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關(guān)鍵.10、D【解析】

如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內(nèi)角互補.解決問題的關(guān)鍵是作平行線.11、C【解析】

把x的值代入代數(shù)式,運用完全平方公式和平方差公式計算即可【詳解】解:當(dāng)x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【點睛】此題考查二次根式的化簡求值,關(guān)鍵是代入后利用完全平方公式和平方差公式進(jìn)行計算.12、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、8【解析】試題分析:根據(jù)冪的乘方與積的乘方運算法則進(jìn)行計算即可考點:(1)、冪的乘方;(2)、積的乘方14、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結(jié)繩計數(shù)”為背景,按滿六進(jìn)一計數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識,另一方面也考查了學(xué)生的思維能力.15、40【解析】

首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.【點睛】本題考查解直角三角形的應(yīng)用﹣方向角問題,解題的關(guān)鍵是證明PB=BC,推出∠C=30°.16、【解析】

直接利用已知點坐標(biāo)得出原點位置,進(jìn)而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標(biāo)為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標(biāo)確定位置,正確得出原點的位置是解題關(guān)鍵.17、4【解析】

先根據(jù)圓錐的側(cè)面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結(jié)論.【詳解】設(shè)圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側(cè)面展開圖,勾股定理,求出OA的長是解本題的關(guān)鍵.18、3﹣或1【解析】

分兩種情況:情況一:如圖一所示,當(dāng)∠A'DE=90°時;情況二:如圖二所示,當(dāng)∠A'ED=90°時.【詳解】解:如圖,當(dāng)∠A'DE=90°時,△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設(shè)AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當(dāng)∠A'ED=90°時,△A'ED為直角三角形,此時∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設(shè)AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【點睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質(zhì)等知識,添加輔助線,構(gòu)造直角三角形,學(xué)會運用分類討論是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A(4,3);(2)28.【解析】

(1)點A是正比例函數(shù)與一次函數(shù)圖像的交點坐標(biāo),把與聯(lián)立組成方程組,方程組的解就是點A的橫縱坐標(biāo);(2)過點A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長,再由BC=OA求得OB的長,用點P的橫坐標(biāo)a表示出點B、C的坐標(biāo),利用BC的長求得a值,根據(jù)即可求得△OBC的面積.【詳解】解:(1)由題意得:,解得,∴點A的坐標(biāo)為(4,3).(2)過點A作x軸的垂線,垂足為D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.20、小亮說的對,CE為2.6m.【解析】

先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應(yīng)用,主要是正弦、正切概念及運算,解決本題的關(guān)鍵把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.21、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】

(1)利用平行線的性質(zhì)及中點的定義,可利用AAS證得結(jié)論;

(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.

∵AD為BC邊上的中線

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點,E是AD的中點,

∴AD=DC=BC,

∴四邊形ADCF是菱形;

(3)連接DF,

∵AF∥BD,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應(yīng)用.22、(1)證明見解析(2)BC=【解析】

(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質(zhì).23、(1)y=x﹣3(2)1【解析】

(1)由已知先求出a,得出點A的坐標(biāo),再把A的坐標(biāo)代入一次函數(shù)y=kx-3求出k的值即可求出一次函數(shù)的解析式;(2)易求點B、C的坐標(biāo)分別為(n,),(n,n-3).設(shè)直線y=x-3與x軸、y軸分別交于點D、E,易得OD=OE=3,那么∠OED=45°.根據(jù)平行線的性質(zhì)得到∠BCA=∠OED=45°,所以當(dāng)△ABC是等腰直角三角形時只有AB=AC一種情況.過點A作AF⊥BC于F,根據(jù)等腰三角形三線合一的性質(zhì)得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【詳解】解:(1)∵反比例y=的圖象過點A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數(shù)y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數(shù)的解析式為y=x﹣3;(2)由題意可知,點B、C的坐標(biāo)分別為(n,),(n,n﹣3).設(shè)直線y=x﹣3與x軸、y軸分別交于點D、E,如圖,當(dāng)x=0時,y=﹣3;當(dāng)y=0時,x=3,∴OD=OE,∴∠OED=45°.∵直線x=n平行于y軸,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一種情況,過點A作AF⊥BC于F,則BF=FC,F(xiàn)(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法求一次函數(shù)的解析式,等腰直角三角形的性質(zhì),難度適中.24、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達(dá)到500元.【解析】

(1)此題可以按等量關(guān)系“每天的銷售利潤=(銷售價﹣進(jìn)價)×每天的銷售量”列出函數(shù)關(guān)系式,并由售價大于進(jìn)價,且銷售量大于零求得自變量的取值范圍.(2)根據(jù)(1)所得的函數(shù)關(guān)系式,利用配方法求二次函數(shù)的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關(guān)系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達(dá)到500元.【點睛】本題考查了二次函數(shù)在實際生活中的應(yīng)用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論