2025屆四川省仁壽縣鏵強中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
2025屆四川省仁壽縣鏵強中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
2025屆四川省仁壽縣鏵強中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
2025屆四川省仁壽縣鏵強中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
2025屆四川省仁壽縣鏵強中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆四川省仁壽縣鏵強中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,四面體-,是底面△的重心,,則()A B.C. D.2.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.3.已知等比數(shù)列,且,則()A.16 B.32C.24 D.644.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49526.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.87.如圖,在正方體中,,,,若為的中點,在上,且,則等于()A. B.C. D.8.直線的傾斜角的大小為()A. B.C. D.9.已知是拋物線的焦點,為拋物線上的動點,且的坐標為,則的最小值是A. B.C. D.10.已知雙曲線(,)的左、右焦點分別為,,點A的坐標為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.11.已知命題,,則()A., B.,C., D.,12.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線:上的一點到它的焦點的距離為3,則__.14.經(jīng)過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程為________15.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.16.若球的大圓的面積為,則該球的表面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標準方程;(2)設(shè)O為坐標原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.18.(12分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.19.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點的直線與相交于、兩點,且,求直線的方程20.(12分)如圖在直三棱柱中,為的中點,為的中點,是中點,是與的交點,是與的交點.(1)求證:;(2)求證:平面;(3)求直線與平面的距離.21.(12分)現(xiàn)將兩個班的藝術(shù)類考生報名表分別裝進2個檔案袋,第一個檔案袋內(nèi)有6名男生和4名女生的報名表,第二個檔案袋內(nèi)有5名男生和5名女生的報名表.隨機選擇一個檔案袋,然后從中隨機抽取2份報名表(1)若選擇的是第一個檔案袋,求從中抽到兩名男生報名表的概率;(2)求抽取的報名表是一名男生一名女生的概率22.(10分)已知函數(shù)(1)若在點處的切線與軸平行,求的值;(2)當(dāng)時,求證:;(3)若函數(shù)有兩個零點,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量的加減運算推出,進而得出結(jié)果.【詳解】因為,所以,故選:B2、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B3、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A4、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設(shè)橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:5、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D6、C【解析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關(guān)于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.7、B【解析】利用空間向量的加減法、數(shù)乘運算推導(dǎo)即可.【詳解】.故選:B.8、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選9、C【解析】由題意可得,拋物線的焦點,準線方程為過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角∴當(dāng)最小時,最小,則當(dāng)和拋物線相切時,最小設(shè)切點,由的導(dǎo)數(shù)為,則的斜率為.∴,則.∴,∴故選C點睛:本題主要考查拋物線的定義和幾何性質(zhì),與焦點、準線有關(guān)的問題一般情況下都與拋物線的定義有關(guān),解決這類問題一定要注意點到焦點的距離與點到準線的距離的轉(zhuǎn)化,這樣可利用三角形相似,直角三角形中的銳角三角函數(shù)或是平行線段比例關(guān)系可求得距離弦長以及相關(guān)的最值等問題.10、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C11、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.12、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時,從左向右函數(shù)先增后減,故時,從左向右導(dǎo)函數(shù)先正后負,故排除AB;當(dāng)時,從左向右函數(shù)先減后增,故時,從左向右導(dǎo)函數(shù)先負后正,故排除D.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:14、4x+3y-6=0【解析】直接求出兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點P的坐標,求出直線的斜率,然后求出所求直線方程【詳解】由方程組可得P(0,2)∵l⊥l3,∴kl=﹣,∴直線l的方程為y﹣2=﹣x,即4x+3y-6=0故答案為:4x+3y-6=015、①②【解析】假設(shè)與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.16、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當(dāng)直線l的斜率存在時,設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標準方程為:.【小問2詳解】當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時,當(dāng)直線l的斜率不存在時,由對稱性不妨令,,,當(dāng)時,,即當(dāng)時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當(dāng)直線斜率不為0時,設(shè)其方程代入橢圓方程利用韋達定理求得兩根關(guān)系式,進而求得的表達式,最后求比值即可;當(dāng)直線斜率為0時直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當(dāng)直線斜率不為0時,設(shè)其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點的坐標為,則弦的垂直平分線為,令,得,,又,;②當(dāng)直線斜率為0時,則,,則.綜合①②得是定值且為4【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1)或(2)或【解析】(1)設(shè)圓心的坐標為,則該圓的半徑長為,利用點到直線的距離公式可求得的值,即可得出圓的標準方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設(shè)直線的方程為,利用點到直線的距離公式可求得關(guān)于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設(shè)圓心的坐標為,則該圓的半徑長為,因為圓心到直線的距離為,解得,所以圓心的坐標為或,半徑為,因此,圓的標準方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標準方程為.因為,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設(shè)直線的方程為,即,由題意可得,解得,所以,直線的方程為或,即或.20、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標系,運用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過建立空間直角坐標系,運用向量數(shù)量積證明,法二:通過面面平行證明線面平行;(3)法一:通過建立空間直角坐標系,運用向量方法求解,法二:運用等體積法求解.【小問1詳解】證明:法一:在直三棱柱中,因為,以點為坐標原點,方向分別為軸正方向建立如圖所示空間直角坐標系.因為,所以,所以所以,所以.法二:連接,在直三棱柱中,有面,面,所以,又,則,因為,所以面因為面,所以因為,所以四邊形為正方形,所以因為,所以面因為面,所以.法三:用三垂線定理證明:連接,在直三棱柱中,有面因為面,所以,又,則,因為,所以面所以在平面內(nèi)的射影為,因為四邊形為正方形,所以,因此根據(jù)三垂線定理可知【小問2詳解】證明:法一:因為為的中點,為的中點,為中點,是與的交點,所以、,依題意可知為重心,則,可得所以,,設(shè)為平面的法向量,則即取得則平面的一個法向量為.所以,則,因為平面,所以平面.法二:連接.在正方形中,為的中點,所以且,所以四邊形是平行四邊形,所以又為中點,所以四邊形是矩形,所以且因為且,所以,所以四邊形為平行四邊形,所以.因為,平面平面平面平面,所以平面平面,平面,所以平面【小問3詳解】法一:由(2)知平面的一個法向量,且平面,所以到平面的距離與到平面的距離相等,,所以,所以點到平面的距離所以到平面的距離為法二:因為分別為和中點,所以為的重心,所以,所以到平面的距離是到平面距離的.取中點則,又平面平面,所以平面,所以到平面的距離與到平面的距離相等.設(shè)點到平面的距離為,由得,又,所以,所以到平面的距離是,所以到平面的距離為.21、(1);(2).【解析】(1)選擇的是第一個檔案袋,從中隨機抽取2份報名表,基本事件總數(shù),從中抽到兩名男生報名表包含的基本事件個數(shù)為,由此能求出從中抽到兩名男生報名表的概率;(2)設(shè)事件表示抽取到第個檔案袋,,設(shè)事件表示抽取的報名表是一名男生一名女生,利用全概率公式能求出抽取的報名表是一名男生一名女生的概率【小問1詳解】(1)第一個檔案袋內(nèi)有6名男生和4名女生的報名表,選擇的是第一個檔案袋,從中隨機抽取2份報名表,基本事件總數(shù),從中抽到兩名男生報名表包含的基本事件個數(shù)為,從中抽到兩名男生報名表的概率【小問2詳解】設(shè)事件表示抽取到第個檔案袋,,設(shè)事件表示抽取的報名表是一名男生一名女生,則,,,,抽取的報名表是一名男生一名女生的概率為:22、(1);(2)證明見解析;(3).【解析】(1)由可求得實數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當(dāng)時,,該函數(shù)的定義域為,,令,其中,則,故函數(shù)在上遞減,因為,,所以,存在,使得,則,且,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論