版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省湖湘名校高二數(shù)學第一學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在棱長為1的正方體中,為的中點,則點到直線的距離為()A. B.1C. D.2.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面3.()A.-2 B.-1C.1 D.24.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現(xiàn)奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據(jù)規(guī)劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.5.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形6.當實數(shù),m變化時,的最大值是()A.3 B.4C.5 D.67.等差數(shù)列的首項為正數(shù),其前n項和為.現(xiàn)有下列命題,其中是假命題的有()A.若有最大值,則數(shù)列的公差小于0B.若,則使的最大的n為18C.若,,則中最大D.若,,則數(shù)列中的最小項是第9項8.若動點在方程所表示的曲線上,則以下結論正確的是()①曲線關于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④9.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.10.我國古代銅錢蘊含了“外圓內方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長為,若在圓內隨即取點,取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.11.△ABC的兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.12.若,則下列結論不正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實數(shù)k的取值范圍是___________.14.在棱長為1的正方體中,___________.15.由曲線圍成的圖形的面積為_______________16.對于實數(shù)表示不超過的最大整數(shù),如.已知數(shù)列的通項公式,前項和為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD是邊長為2的正方形,為正三角形,且側面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小18.(12分)點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.19.(12分)某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內排出污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關系式;(2)求排放污水150噸的污水處理費用.20.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.21.(12分)已知函數(shù),.(1)當時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(ⅰ)求的取值范圍;(ⅱ)證明:.22.(10分)已知函數(shù)(1)討論函數(shù)的單調性;(2)證明:對任意正整數(shù)n,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】建立空間直角坐標系,利用空間向量點到直線的距離公式進行求解即可【詳解】建立如圖所示的空間直角坐標系,由已知,得,,,,,所以在上的投影為,所以點到直線的距離為故選:B2、D【解析】根據(jù)對立事件的定義選擇【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為“有2次或3次出現(xiàn)反面”故選:D3、A【解析】利用微積分基本定理計算得到答案.【詳解】.故選:.【點睛】本題考查了定積分的計算,意在考查學生的計算能力.4、B【解析】分別設內外層橢圓方程為、,進而設切線、分別為、,聯(lián)立方程組整理并結合求、關于a、b、m的關系式,再結合已知得到a、b的齊次方程求離心率即可.【詳解】若內層橢圓方程為,由離心率相同,可設外層橢圓方程為,∴,設切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關鍵點點睛:根據(jù)內外橢圓的離心率相同設橢圓方程,并寫出切線方程,聯(lián)立方程結合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.5、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C6、D【解析】根據(jù)點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質結合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設,因直線,即表示恒過定點,根據(jù)圓的性質可得.故選:D.7、B【解析】由有最大值可判斷A;由,可得,,利用可判斷BC;,得,,可判斷D.【詳解】對于選項A,∵有最大值,∴等差數(shù)列一定有負數(shù)項,∴等差數(shù)列為遞減數(shù)列,故公差小于0,故選項A正確;對于選項B,∵,且,∴,,∴,,則使的最大的n為17,故選項B錯誤;對于選項C,∵,,∴,,故中最大,故選項C正確;對于選項D,∵,,∴,,故數(shù)列中的最小項是第9項,故選項D正確.故選:B.8、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結論正確的是:①②.故選:A9、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D10、B【解析】根據(jù)圓和正方形的面積公式結合幾何概型概率公式求解即可.【詳解】由可得故選:B11、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎題.12、B【解析】由得出,再利用不等式的基本性質和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當且僅當時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質和基本不等式,考查推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、1【解析】根據(jù)向量的加法及向量數(shù)量積的運算性質求解.【詳解】如圖,在正方體中,,故答案為:115、【解析】當時,曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據(jù)對稱性,可知由曲線圍成的圖形的面積為考點:本小題主要考查曲線表示的平面圖形的面積的求法,考查學生分類討論思想的運用和運算求解能力.點評:解決此題的關鍵是看出所求圖形在四個象限內是相同的,然后求出在一個象限內的圖形的面積即可解決問題.16、54【解析】由,利用裂項相消法求得,再由的定義求解.【詳解】由已知可得:,,當時,,;當時,,;當時,,;當時,,;當時,;;所以.故答案為:54.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標系,利用向量法直接可求.【小問1詳解】連接BD,與AC交于點O,在中,因為O,M分別為BD,PD的中點,則,又平面ACM,平面ACM,所以平面ACM.【小問2詳解】設E是AB的中點,連接PE,因為為正三角形,則,又因為平面底面ABCD,平面平面,則平面ABCD,過點E作EF平行于CB,與CD交于點F,以E為坐標原點,建立空間直角坐標系如圖所示,則,,,,,,所以,,設平面CBM的法向量為,則,令,則,因為平面ABCD,則平面ABCD的一個法向量為,所以,所以平面MBC與平面DBC所成角大小為30°18、(1)(,).(2)【解析】(1)根據(jù)條件列關于P點坐標得方程組,解得結果,(2)先根據(jù)點到直線距離公式結合條件解得點M坐標,再建立的函數(shù)解析式,最后根據(jù)二次函數(shù)性質求最小值.【詳解】解:(1)由已知可得點A(-6,0),F(4,0)設點P(,),則={+6,},={-4,},由已知可得則2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴點P的坐標是(,).(2)直線AP的方程是-+6=0.設點M(,0),則M到直線AP的距離是.于是=,又-6≤≤6,解得=2.橢圓上的點(,)到點M的距離為,則,由于-6≤≤6,∴當=時,取得最小值.【點睛】本題考查直線與橢圓位置關系,考查基本分析求解能力,屬中檔題.19、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關系式;(2)根據(jù)(1)中所求函數(shù)關系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當時,;當時,;當時,.即.【小問2詳解】因為,故,故該廠應繳納污水處理費1400元.20、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標系,得到相關點和相關向量的坐標,(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標系∵,,點M是PA的中點,點D是AC的中點,點N在PB上且∴,,,,,設平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小問2詳解】,,∴平面∴為平面的法向量則與的夾角的補角是平面與平面所成二面角的平面角.∴平面與平面所成角的余弦值為.21、(1);(2)(?。唬áⅲ┳C明見解析.【解析】(1)求出,,利用導數(shù)的幾何意義即可求得切線方程;(2)(?。└鶕?jù)題意對參數(shù)分類討論,當時,等價轉化,且構造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關系,求得并構造函數(shù),利用導數(shù)研究其單調性和最值,則問題得證.【小問1詳解】當時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(?。┮驗椋士傻?,因為,則當時,,則,無零點,不滿足題意;當時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍?,若在區(qū)間上有唯一的零點,則,也即,則,令,則,又在都是單調增函數(shù),故是單調增函數(shù),又,故,則在單調遞增,則,故,即證.【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的零點以及最值;處理問題的關鍵是合理轉化函數(shù)零點問題,以及充分利用零點存在定理,熟練掌握構造函數(shù)法,屬綜合困難題.22、(1)見解析(2)見解析【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新媒體內容版權授權與保護合作協(xié)議2篇
- 2024年標準土地共同開發(fā)合同版
- 2023-2024學年高中信息技術選擇性必修1(浙教版2019)數(shù)據(jù)與數(shù)據(jù)結構-說課稿-5.4-數(shù)據(jù)查找
- 2024提高教育資源共享傳播能力采購合同3篇
- 2024數(shù)碼相機租賃與體育賽事轉播合同范本3篇
- 高血壓健康宣教
- 專業(yè)車輛租賃協(xié)議:2024經(jīng)典版式版
- 職業(yè)學院學生外出活動安全承諾書
- 2024志愿服務協(xié)議書
- 個人最高額抵押融資協(xié)議樣本(2024版)版B版
- 河長制工作總結報告5篇河長制年度工作總結
- 第二期專題04-短文填空(6選5)-沖刺中考英語必考題型終極預測(深圳專用)
- 民間借貸利息計算表
- 酒店保潔服務投標方案(技術方案)
- 《白描花卉妙筆生》 課件 2024-2025學年嶺南美版(2024) 初中美術七年級上冊
- 2025年公務員考試申論試題與參考答案
- 2024年秋季新人教PEP版三年級上冊英語全冊教案
- 蘇教版四年級上冊四則混合運算練習200道及答案
- 2024耐張線夾技術規(guī)范
- 2024年中考英語語法感嘆句100題精練
- 《海洋與人類》導學案
評論
0/150
提交評論