版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省常州市禮嘉中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.2.已知函數(shù),若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.3.數(shù)列1,-3,5,-7,9,…的一個通項公式為A. B.C. D.4.已知雙曲線:的左、右焦點分別為,,點在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.5.已知圓,為圓外的任意一點,過點引圓的兩條切線、,使得,其中、為切點.在點運動的過程中,線段所掃過圖形的面積為()A. B.C. D.6.現(xiàn)要完成下列兩項調(diào)查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調(diào)查社會購買能力的某項指標;②從某中學的15名藝術(shù)特長生中選出3名調(diào)查學習負擔情況.這兩項調(diào)查宜采用的抽樣方法是()A①簡單隨機抽樣,②分層抽樣 B.①分層抽樣,②簡單隨機抽樣C.①②都用簡單隨機抽樣 D.①②都用分層抽樣7.中國景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛,如圖1這個精美的青花瓷花瓶,它的頸部(圖2)外形上下對稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉(zhuǎn)所形成的曲面,若該頸部中最細處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.408.在空間直角坐標系中,點關(guān)于原點對稱的點的坐標為()A. B.C. D.9.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.10.已知數(shù)列滿足,則()A.32 B.C.1320 D.11.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.12.已知等差數(shù)列的前n項和為Sn,首項a1=1,若,則公差d的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的方程為,點是直線上的一個動點,過點作圓的兩條切線為切點,則四邊形面積的最小值為__________;直線__________過定點.14.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.15.如圖①,用一個平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數(shù)學家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個大小不同的球,使得它們分別與圓錐的側(cè)面,截面相切,兩個球分別與截面相切于,在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于,由球和圓的幾何性質(zhì),可以知道,,于是.由的產(chǎn)生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點的橢圓.如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.16.若,滿足約束條件,則的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)男子10米氣步槍比賽規(guī)則如下:在資格賽中,射手在距離靶子10米處,采用立姿,在105分鐘內(nèi)射擊60發(fā)子彈,總環(huán)數(shù)排名前8名的射手進入決賽;在決賽中,每位射手僅射擊10發(fā)子彈.已知甲乙兩名運動員均進入了決賽,資格賽中的環(huán)數(shù)情況整理得下表:環(huán)數(shù)頻數(shù)678910甲2352327乙5502525以各人這60發(fā)子彈環(huán)數(shù)的頻率作為決賽中各發(fā)子彈環(huán)數(shù)發(fā)生的概率,甲乙兩人射擊互不影響(1)求甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)決賽打完第9發(fā)子彈后,甲比乙落后2環(huán),求最終甲能戰(zhàn)勝乙(甲環(huán)數(shù)大于乙環(huán)數(shù))的概率18.(12分)已知函數(shù)(Ⅰ)若的圖象在點處的切線與軸負半軸有公共點,求的取值范圍;(Ⅱ)當時,求的最值19.(12分)已知某電器市場由甲、乙、丙三家企業(yè)占有,其中甲廠產(chǎn)品的市場占有率為40%,乙廠產(chǎn)品的市場占有率為36%,丙廠產(chǎn)品的市場占有率為24%,甲、乙、丙三廠產(chǎn)品的合格率分別為,,(1)現(xiàn)從三家企業(yè)的產(chǎn)品中各取一件抽檢,求這三件產(chǎn)品中恰有兩件合格的概率;(2)現(xiàn)從市場中隨機購買一臺該電器,則買到的是合格品的概率為多少?20.(12分)在平面直角坐標系xOy中,橢圓C的左,右焦點分別為F1(﹣,0),F(xiàn)2(,0),且橢圓C過點(﹣).(1)求橢圓C的標準方程;(2)設(shè)過(0,﹣2)的直線l與橢圓C交于M,N兩點,O為坐標原點,若,求直線l的方程.21.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程22.(10分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當為何值時,最大,并求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.2、B【解析】構(gòu)造,通過求導,研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結(jié)合求出實數(shù)的取值范圍.【詳解】令,即,令,當時,,,令得:或,結(jié)合,所以,令得:,結(jié)合得:,所以在處取得極大值,也是最大值,,當時,,且,當時,,則恒成立,單調(diào)遞增,且當時,,當時,,畫出的圖象,如下圖:要想有3個零點,則故選:B3、C【解析】觀察,奇偶相間排列,偶數(shù)位置為負,所以為,數(shù)字是奇數(shù),滿足2n-1,所以可求得通項公式.【詳解】由符號來看,奇數(shù)項為正,偶數(shù)項為負,所以符號滿足,由數(shù)值1,3,5,7,9…顯然滿足奇數(shù),所以滿足2n-1,所以通項公式為,選C.【點睛】本題考查觀察法求數(shù)列的通項公式,解題的關(guān)鍵是培養(yǎng)對數(shù)字的敏銳性,屬于基礎(chǔ)題.4、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當為鈍角時的取值范圍,根據(jù)雙曲線的對稱性,可以只考慮點在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點分別為,,點在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對稱性不妨考慮點在雙曲線第一象限部分:當為鈍角時,在中,設(shè),有,,即,,所以;當時,所在直線方程,所以,,,根據(jù)圖象可得要使,點向右上方移動,此時,綜上所述:的取值范圍是.故選:C【點睛】此題考查雙曲線中焦點三角形相關(guān)計算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.5、D【解析】連接、、,分析可知四邊形為正方形,求出點的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環(huán),利用圓的面積公式可求得結(jié)果.【詳解】連接、、,由圓的幾何性質(zhì)可知,,又因為且,故四邊形為正方形,圓心,半徑為,則,故點的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環(huán),故在點運動的過程中,線段所掃過圖形的面積為.故選:D.6、B【解析】通過簡單隨機抽樣和分層抽樣的定義辨析得到選項【詳解】在①中,由于購買能力與收入有關(guān),應(yīng)該采用分層抽樣;在②中,由于個體沒有明顯差別,而且數(shù)目較少,應(yīng)該采用簡單隨機抽樣故選:B7、B【解析】設(shè)雙曲線方程為,根據(jù)已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因為雙曲線焦點在軸上,設(shè)雙曲線方程為由雙曲線的性質(zhì)可知:該頸部中最細處直徑為實軸長,所以,可得,因為離心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據(jù)對稱性可知頸部最右點橫坐標為,將代入雙曲線可得,解得:,所以頸部高為,故選:B8、C【解析】根據(jù)點關(guān)于原點對稱的性質(zhì)即可知答案.【詳解】由點關(guān)于原點對稱,則對稱點坐標為該點對應(yīng)坐標的相反數(shù),所以.故選:C9、B【解析】根據(jù)函數(shù)求導,然后由求解.【詳解】因為函數(shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B10、A【解析】先令,求出,再當時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當時,,當時,由,可得,兩式相除可得,所以,所以,故選:A11、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D12、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)切線的相關(guān)性質(zhì)將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點在以為直徑的圓上,且是兩圓的公共弦,設(shè)出點坐標,求出圓的方程可得直線方程,即可得出定點.詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當垂直直線時,,所以四邊形的面積的最小值為,可得四點在以為直徑的圓上,且是兩圓的公共弦,設(shè),則圓心為,半徑為,則該圓方程為,整理可得,聯(lián)立兩圓可得直線AB的方程為,即可得當時,,故直線過定點.故答案為:;.14、##【解析】利用列舉法,結(jié)合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:15、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點為橢圓的一個焦點,求出,得出離心率.【詳解】設(shè)球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據(jù)橢圓在圓錐中截面與二球相切的切點為橢圓的焦點知:球O與相切的切點為橢圓的一個焦點,且,,橢圓的離心率為.故答案:.16、【解析】作出線性約束條件的可行域,再利用截距的幾何意義求最小值;【詳解】約束條件的可行域,如圖所示:目標函數(shù)在點取得最小值,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求出甲運動員打中10環(huán)的概率,從而可求出甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)由于甲比乙落后2環(huán),所以甲要獲勝,則乙6環(huán),甲9環(huán)或10環(huán),或者乙7環(huán),甲10環(huán),再利用獨立事件和互斥事件的概率公式求解即可【小問1詳解】由表中的數(shù)據(jù)可得甲運動員打中10環(huán)的概率為,所以甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率為【小問2詳解】因為甲比乙落后2環(huán),所以甲要獲勝,則乙打中6環(huán),甲打中9環(huán)或10環(huán),或者乙打中7環(huán),甲打中10環(huán),因為由題意可得乙打中6環(huán)的概率和打中7環(huán)的概率均為,甲打中9環(huán)的概率為,打中10環(huán)的概率為,且甲乙兩人射擊互不影響所以最終甲能戰(zhàn)勝乙的概率為18、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導數(shù).求得切線方程,由切線與軸的交點在負半軸可得的范圍;(Ⅱ)求導數(shù),由的正負確定單調(diào)性,極值得最值【詳解】命題意圖本題主要考查導數(shù)在函數(shù)問題中的應(yīng)用解析(Ⅰ)由題可知,,故可得的圖象在點處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ)當時,,易知在上單調(diào)遞增又,當時,,此時單調(diào)遞減,當時,,此時單調(diào)遞增,無最大值【點睛】關(guān)鍵點點睛:本題考查用導數(shù)的幾何意義,考查用導數(shù)求函數(shù)的的最值.解題關(guān)鍵是求出導函數(shù),由的正負確定單調(diào)性,得函數(shù)的極值,從而可得最值19、(1)(2)【解析】(1)由相互獨立事件的概率可得;(2)根據(jù)各產(chǎn)品的市場占有率和合格率,由條件概率公式計算可得.【小問1詳解】記隨機抽取甲乙丙三家企業(yè)的一件產(chǎn)品,產(chǎn)品合格分別為事件,,,則三個事件相互獨立,恰有兩件產(chǎn)品合格為事件D,則故從三家企業(yè)的產(chǎn)品中各取一件抽檢,則這三件產(chǎn)品中恰有兩件合格的概率是【小問2詳解】記事件B為購買的電器合格,記隨機買一件產(chǎn)品,買到的產(chǎn)品為甲乙丙三個品牌分別為事件,,,,,,,,,故在市場中隨機購買一臺電器,買到的是合格品的概率為20、(1)(2)或.【解析】(1)設(shè)標準方程代入點的坐標,解方程組得解.(2)設(shè)直線方程代入橢圓方程消元,韋達定理整體思想,可得直線斜率得解.【小問1詳解】因為橢圓C的焦點為,可設(shè)橢圓C的方程為,又點在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當直線的斜率不存在時,顯然不滿足題意;當直線的斜率存在時,設(shè)直線的方程為,設(shè),,因為,所以,因為,,所以,所以,①聯(lián)立方程,消去得,則,代入①,得,解得,經(jīng)檢驗,此時直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)計研學營課程設(shè)計方案
- 近期餐廳轉(zhuǎn)讓合同范例
- 打降水井合同范例
- 美容店中途入股合同范例
- 停車場停車協(xié)議書2篇
- 全面市場調(diào)研合作協(xié)議3篇
- 網(wǎng)紅商標授權(quán)合同范例
- 合作設(shè)立公司協(xié)議書3篇
- 學校心理安全協(xié)議書3篇
- 婚慶酒店合同3篇
- 心肺復蘇術(shù)最新版
- 2023-2024學年貴州省貴陽市小學數(shù)學六年級上冊期末自測提分卷
- GB/T 9115.2-2000凹凸面對焊鋼制管法蘭
- 永久避難硐室安裝施工組織措施
- 元旦節(jié)前安全教育培訓-教學課件
- 芯片工藝流程課件1
- 化工原理設(shè)計-苯-氯苯分離過程板式精餾塔設(shè)計
- 人教版八年級下冊生物期末測試卷帶答案
- 新教材人教A版高中數(shù)學選擇性必修第一冊全冊教學課件
- IEC60335-1-2020中文版-家用和類似用途電器的安全第1部分:通用要求(中文翻譯稿)
- 保險專題高凈值人士的財富傳承課件
評論
0/150
提交評論