版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南省株洲市數(shù)學(xué)高二上期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.32.紫砂壺是中國特有的手工制造陶土工藝品,其制作始于明朝正德年間.紫砂壺的壺型眾多,經(jīng)典的有西施壺、掇球壺、石瓢壺、潘壺等.其中,石瓢壺的壺體可以近似看成一個圓臺(即圓錐用平行于底面的平面截去一個錐體得到的).下圖給出了一個石瓢壺的相關(guān)數(shù)據(jù)(單位:cm),那么該壺的容量約為()A.100 B.C.300 D.4003.若圓與圓相外切,則的值為()A. B.C.1 D.4.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形5.傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項為()A. B.C. D.6.數(shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點分別為,,,則的歐拉線方程是()A. B.C. D.7.將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.8.直線被橢圓截得的弦長是A. B.C. D.9.過點(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=010.直線在y軸上的截距為()A.-1 B.1C. D.11.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.312.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,平面BCD,,,,則三棱錐的外接球的表面積為_____.14.如圖,橢圓的左右焦點為,,以為圓心的圓過原點,且與橢圓在第一象限交于點,若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.15.如圖,在直三棱柱中,,為中點,則平面與平面夾角的正切值為___________.16.已知實數(shù)x,y滿足約束條件,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當|AP|=|AQ|時,求實數(shù)m的取值范圍.18.(12分)如圖,在平面直角坐標系中,點,,(1)求直線BC的方程;(2)記的外接圓為圓M,若直線OC被圓M截得的弦長為4,求點C的坐標19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當a=1時,對于任意的,,都有恒成立,則m的取值范圍.20.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程21.(12分)某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表,按年級分層抽樣的方法評選優(yōu)秀學(xué)生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如圖所示,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過5分的概率.22.(10分)已知三條直線:,:,:(是常數(shù)),.(1)若,,相交于一點,求的值;(2)若,,不能圍成一個三角形,求的值:(3)若,,能圍成一個直角三角形,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)輸出結(jié)果可得輸出時,結(jié)合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【詳解】由,得,則輸人的可能為.∴結(jié)合選項知:D符合要求.故選:D.2、B【解析】根據(jù)圓臺的體積等于兩個圓錐的體積之差,即可求出【詳解】設(shè)大圓錐的高為,所以,解得故故選:B【點睛】本題主要考查圓臺體積的求法以及數(shù)學(xué)在生活中的應(yīng)用,屬于基礎(chǔ)題3、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D4、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計算能力,屬于基礎(chǔ)題5、D【解析】根據(jù)前三個五邊形數(shù)可推斷出第四個五邊形數(shù).【詳解】第一個五邊形數(shù)為,第二個五邊形數(shù)為,第三個五邊形數(shù)為,故第四個五邊形數(shù)為.故選:D.6、B【解析】根據(jù)的三個頂點坐標,先求解出重心的坐標,然后再根據(jù)三個點坐標求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標,最后根據(jù)重心和外心的坐標使用點斜式寫出直線方程.【詳解】由題意可得的重心為.因為,,所以線段的垂直平分線的方程為.因為,,所以直線的斜率,線段的中點坐標為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標為,故的歐拉線方程是,即故選:B.7、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標縮短到原來的,縱坐標不變,得到的圖象,即的圖象.故.故選:A8、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標,即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題9、A【解析】當直線被圓截得的最弦長最大時,直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(-2,1),所以所求直線的方程為,即故選:A10、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A11、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B12、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當時,,單調(diào)遞減.當時,,單調(diào)遞增.所以當時,取得極小值,極小值為,無極大值.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知三棱錐的外接球即為三棱柱的外接球,進而求出三棱柱的外接球的半徑即可得出結(jié)果.【詳解】因為,,所以,故,又因為平面BCD,因此三棱錐的外接球即為三棱柱的外接球,如圖:取的中點,則為外接圓的圓心,取的中點,則為外接圓的圓心,則的中點即為外接球的球心,因此,,因此,所以三棱錐的外接球的表面積為,故答案為:.14、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.15、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:16、【解析】作出該不等式表示的平面區(qū)域,由的幾何意義結(jié)合距離公式得出答案.【詳解】該不等式組表示的平面區(qū)域,如下圖所示過點作直線的垂線,垂足為因為表示原點與可行域中點之間的距離,所以的最小值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)+y2=1;(2).【解析】(1)應(yīng)用向量垂直的坐標表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點P(x1,y1),Q(x2,y2),設(shè)直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.設(shè)P(x1,y1),Q(x2,y2),線段PQ的中點N(x0,y0),則.∵|AP|=|AQ|,即知PQ⊥AN,設(shè)kAN表示直線AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.將②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范圍為.【點睛】思路點睛:1、由向量垂直,結(jié)合其坐標表示得到關(guān)于x,y的方程,寫出曲線C的標準方程即可.2、由直線與曲線C相交,聯(lián)立方程有,由|AP|=|AQ|得直線的垂直關(guān)系,即斜率之積為-1,進而可求參數(shù)的范圍.18、(1);(2).【解析】(1)延長CB交x軸于點N,根據(jù)給定條件求出即可計算作答.(2)利用待定系數(shù)法求出圓M的方程,再由給定弦長確定C點位置,推理計算得解.【小問1詳解】延長CB交x軸于點N,如圖,因,則,又,則有,又,于是得,則直線BC的傾斜角為120°,直線BC的斜率,因此,,即所以直線BC的方程為.【小問2詳解】依題意,設(shè)圓M的方程為,由(1)得:,解得,于是得圓M的方程為,即,圓心,半徑,因直線OC被圓M所截的弦長為4,則直線OC過圓心,其方程為,由解得,即,所以點C的坐標是.19、(1)答案見解析;(2).【解析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問1詳解】由題可得的定義域為,若,恒有,當時,,當時,,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當時,;當時,,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當時,;當時,,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當,在上單調(diào)遞增,在上單調(diào)遞減,當,在和上單調(diào)遞增,在上單調(diào)遞減,當,在上單調(diào)遞增,當,在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】由(1)知,時,在和上單調(diào)遞增,在上單調(diào)遞減;當a=1時,,,,∴.又,,∴.由題意得,,∴.20、(1)(2)或【解析】(1)將橢圓化為標準方程,求得,進而求得離心率;(2)設(shè)直線,,,與橢圓聯(lián)立,借助韋達定理及弦長公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設(shè)直線,,聯(lián)立,化簡得,則,解得,,由弦長公式知,,解得,故直線或21、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關(guān)系式計算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計算即可;(3)求出樣本平均數(shù),進而求出與樣本平均數(shù)之差的絕對值不超過5的數(shù),從而利于古典概型的概率公式計算即可.【小問1詳解】設(shè)該???cè)藬?shù)為n人,由題意得,所以,.【小問2詳解】設(shè)所抽樣本中有m個女生,因為用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個,其中至少有1名女生的基本事件有,,,,,,,共7個,所以從中任取2人,至少有1名女生的概率為.【小問3詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焦慮抑郁癥的臨床護理
- 宮縮乏力的健康宣教
- 創(chuàng)傷性肘關(guān)節(jié)炎的健康宣教
- 慢性蝶竇炎的健康宣教
- JJF(黔) 82-2024 光柱式血壓計校準規(guī)范
- 《數(shù)學(xué)家的生日蛋糕》課件
- 學(xué)期班級教學(xué)計劃活動任務(wù)工作安排
- 2024-2025學(xué)年年七年級數(shù)學(xué)人教版下冊專題整合復(fù)習卷第28章 銳角三角函數(shù) 數(shù)學(xué)活動(含答案)
- 魚塘工程施工合同三篇
- 職場變革應(yīng)對指南計劃
- 安徽省蚌埠市聯(lián)考2024-2025學(xué)年七年級上學(xué)期12月期末考試英語試題(無答案)
- 《SYT6848-2023地下儲氣庫設(shè)計規(guī)范》
- 2024至2030年中國甲醚化氨基樹脂行業(yè)投資前景及策略咨詢研究報告
- 行政案例分析-第二次形成性考核-國開(SC)-參考資料
- 2024-2025學(xué)年人教版八年級上學(xué)期數(shù)學(xué)期末復(fù)習試題(含答案)
- “感恩老師”教師節(jié)主題班會教案【三篇】
- 揚塵防治(治理)監(jiān)理實施細則(范本)
- 危險化學(xué)品經(jīng)營單位主要負責人考試練習題(含答案)
- 2024年廣西安全員A證考試題庫
- 高等數(shù)學(xué)教程 上冊 第4版 測試題及答案 共4套
- 太陽能路燈維護與保養(yǎng)方案
評論
0/150
提交評論