吉林省長春市榆樹市2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
吉林省長春市榆樹市2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
吉林省長春市榆樹市2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
吉林省長春市榆樹市2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
吉林省長春市榆樹市2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省長春市榆樹市2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為F,則點F到其一條漸近線的距離為()A.1 B.2C.3 D.42.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.若公差不為0的等差數(shù)列的前n項和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.124.?dāng)?shù)列中,,,則()A.32 B.62C.63 D.645.直線與直線平行,則兩直線間的距離為()A. B.C. D.6.設(shè)拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.87.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.8.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.9.下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知曲線的方程為,則下列說法正確的是()①曲線關(guān)于坐標原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③11.函數(shù)圖象的一個對稱中心為()A. B.C. D.12.【2018江西撫州市高三八校聯(lián)考】已知雙曲線(,)與拋物線有相同的焦點,且雙曲線的一條漸近線與拋物線的準線交于點,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)橢圓,點在橢圓上,求該橢圓在P處的切線方程______.14.已知橢圓的焦點分別為,A為橢圓上一點,則________15.已知等比數(shù)列的前項和為,若,,則______.16.如圖,某建筑物的高度,一架無人機上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機距離地面的高度為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,側(cè)面是邊長為4的正三角形,且與底面垂直,底面是菱形,且,為的中點(1)求證:;(2)求點到平面的距離18.(12分)已知拋物線的焦點與曲線的右焦點重合.(1)求拋物線的標準方程;(2)若拋物線上的點滿足,求點的坐標.19.(12分)在中,角、、C所對的邊分別為、、,,.(1)若,求的值;(2)若的面積,求,的值.20.(12分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標準方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.21.(12分)某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.22.(10分)請分別確定滿足下列條件的直線方程(1)過點(1,0)且與直線x﹣2y﹣2=0垂直直線方程是(2)求與直線3x-4y+7=0平行,且在兩坐標軸上截距之和為1的直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由雙曲線方程可寫出右焦點坐標,再寫一漸近線方程,根據(jù)點到直線的距離公式可得答案.【詳解】雙曲線的右焦點F坐標為,根據(jù)雙曲線的對稱性,不妨取一條漸近線為,故點F到漸近線的距離為,故選:A2、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.3、C【解析】設(shè)等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項和公差,再利用前n項和公式求解.【詳解】設(shè)等差數(shù)列的公差為d,因為,且,,為等比數(shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C4、C【解析】把化成,故可得為等比數(shù)列,從而得到的值.【詳解】數(shù)列中,,故,因為,故,故,所以,所以為等比數(shù)列,公比為,首項為.所以即,故,故選C.【點睛】給定數(shù)列的遞推關(guān)系,我們常需要對其做變形構(gòu)建新數(shù)列(新數(shù)列的通項容易求得),常見的遞推關(guān)系和變形方法如下:(1),取倒數(shù)變形為;(2),變形為,也可以變形為;5、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當(dāng)時,,,此時,故兩直線平行時又之間的距離為,故選:B.6、C【解析】根據(jù)焦點弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C7、C【解析】如圖由題可得,進而可得,即求.【詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.8、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B9、C【解析】先舉例說明ABD不成立,再根據(jù)不等式性質(zhì)說明C成立.【詳解】當(dāng)時,滿足,但不成立,所以A錯;當(dāng)時,滿足,但不成立,所以B錯;當(dāng)時,滿足,但不成立,所以D錯;因為所以,又,因此同向不等式相加得,即C對;故選:C【點睛】本題考查不等式性質(zhì),考查基本分析判斷能力,屬基礎(chǔ)題.10、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標原點對稱所以①正確,當(dāng)時,曲線的方程化為,此時當(dāng)時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當(dāng),時,設(shè),設(shè),則,(當(dāng)且僅當(dāng)或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D11、D【解析】要求函數(shù)圖象的一個對稱中心的坐標,關(guān)鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進行取值,進而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.12、C【解析】由題意可知,拋物線的焦點坐標為,準線方程為,由在拋物線的準線上,則,則,則焦點坐標為,所以,則,解得,雙曲線的漸近線方程是,將代入漸近線的方程,即,則雙曲線的離心率為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:14、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:415、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.16、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點睛】本題考查了解三角形的應(yīng)用問題,考查正弦定理,三角形內(nèi)角和問題,考查轉(zhuǎn)化化歸能力,是基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點,連接,,,先證明平面,再由平面得,(2)等體積法求解.根據(jù)題目條件,先證明為三棱錐的高,再求出以為頂點,為底面的三棱錐的體積和以為頂點,為底面的三棱錐的體積,根據(jù),求點到平面的距離.【詳解】(1)證明:如圖,取的中點,連接,,依題意可知,,均為正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即為三棱錐的高由題意得,∵為的中點,∴在中,,∴,,∴在中,邊上的高,∴的面積的面積點到平面的距離即點到平面的距離設(shè)點到平面的距離為,由,得,即,解得,即點到平面的距離為18、(1);(2)或.【解析】(1)求出雙曲線的右焦點坐標,可求出的值,即可得出拋物線的標準方程;(2)設(shè)點,由拋物線的定義求出的值,代入拋物線的方程可求得的值,即可得出點的坐標.【詳解】(1)由雙曲線方程可得,,所以,解得.則曲線的右焦點為,所以,.因此,拋物線的標準方程為;(2)設(shè),由拋物線的定義及已知可得,解得.代入拋物線方程可得,解得,所以點的坐標為或.19、(1)(2),【解析】(1)根據(jù)同角三角函數(shù)的基本關(guān)系求解的值,再結(jié)合正弦定理求解即可;(2)根據(jù)三角形的面積可求解出邊c的值,再運用余弦定理求解邊b.【詳解】(1),且,.由正弦定理得,.(2),.由余弦定理得,.20、(1)(2)證明見解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標準方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,由此求得,同理求得,從而化簡求得直線的斜率為定值.【小問1詳解】由題可知,解得,從而粚圓方程為.【小問2詳解】證明設(shè)直線的斜率為,則,,聯(lián)立直線與橢圓的方程,得,整理得,從而,于是,由題意得直線的斜率為,則,,同理可求得,于是即直線的斜率為定值.21、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤有1000元.(3).【解析】(1)對于平均數(shù),運用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關(guān)于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤.(3)該為古典概型,根據(jù)題意分別確定總的基本事件個數(shù),以及事件“快遞費為45元”包括的基本事件個數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天數(shù)分別為6、6、30、12、6,所以每天包裹數(shù)量的平均數(shù)為設(shè)中位數(shù)為x,易知,則,解得x=260.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)由(1)可知平均每天的攬件數(shù)為260,利潤為(元),所以該公司平均每天的利潤有1000元(3)設(shè)四件禮物分為二個包裹E、F,因為禮物A、C、D共重(千克),禮物B、C、D共重(千克),都超過5千克,故E和F的重量數(shù)分別有,,,,共5種,對應(yīng)的快遞費分別為45、45、50,45,50(單位:元)故所求概率為.【點睛】主要考查了頻率分布直方圖的平均數(shù),中位數(shù)求解,以及古典概型,屬于中檔題.22、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論