版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省濰坊新高二上數(shù)學(xué)期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)到雙曲線的漸近線的距離是()A. B.C.1 D.2.等比數(shù)列滿足,,則()A.11 B.C.9 D.3.劉徽是一個偉大的數(shù)學(xué)家,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的數(shù)學(xué)遺產(chǎn),他所提出的割圓術(shù)可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術(shù)的第一步是求圓的內(nèi)接正六邊形的面積.若在圓內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自該圓內(nèi)接正六邊形的概率是()A. B.C. D.4.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.45.已知點(diǎn)P在拋物線上,點(diǎn)Q在圓上,則的最小值為()A. B.C. D.6.?dāng)?shù)列中,,,.當(dāng)時,則n等于()A.2016 B.2017C.2018 D.20197.音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?,得到“微”,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼模玫健吧獭薄来艘?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列8.命題P:ax2+2x﹣1=0有實(shí)數(shù)根,若¬p是假命題,則實(shí)數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}9.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.7810.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.711.在區(qū)間上隨機(jī)取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.12.已知兩圓相交于兩點(diǎn),,兩圓圓心都在直線上,則值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點(diǎn),使得經(jīng)過這三個頂點(diǎn)的平面與直線垂直.這三個頂點(diǎn)可以是________14.如圖,長方體中,,,,,分別是,,的中點(diǎn),則異面直線與所成角為__.15.在空間直角坐標(biāo)系中,已知點(diǎn)A,若點(diǎn)P滿足,則_______16.已知命題恒成立;,若p,均為真,則實(shí)數(shù)a的取值范圍__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點(diǎn).(1)求證:平面PBC;(2)在線段PD上是否存在一點(diǎn)M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.18.(12分)設(shè)圓的圓心為﹐直線l過點(diǎn)且與x軸不重合,直線l交圓于A,B兩點(diǎn).過作的平行線交于點(diǎn)P.(1)求點(diǎn)P的軌跡方程;(2)設(shè)點(diǎn)P的軌跡為曲線E,直線l交E于M,N兩點(diǎn),C在線段上運(yùn)動,原點(diǎn)O關(guān)于C的對稱點(diǎn)為Q,求四邊形面積的取值范圍;19.(12分)已知等比數(shù)列中,,數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列為等差數(shù)列,并求前項(xiàng)和的最大值20.(12分)已知內(nèi)角A,B,C的對邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大??;(2)若,且的面積為,求的周長.21.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點(diǎn)為線段的中點(diǎn).(1)證明:平面;(2)求直線與平面所成角的正弦值.22.(10分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先確定拋物線的焦點(diǎn)坐標(biāo),和雙曲線的漸近線方程,再由點(diǎn)到直線的距離公式即可求出結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,雙曲線的漸近線方程為,由點(diǎn)到直線的距離公式可得.故選:B2、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B3、B【解析】此點(diǎn)取自該圓內(nèi)接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內(nèi)接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點(diǎn)睛】此題考查幾何概率模型求解,關(guān)鍵在于準(zhǔn)確求出正六邊形的面積和圓的面積.4、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設(shè)公差為d,由,,得,解得.故選:B5、C【解析】先計算拋物線上的點(diǎn)P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時,,∴故選:C.6、B【解析】根據(jù)已知條件用逐差法求得的通項(xiàng)公式,再根據(jù)裂項(xiàng)求和法求得,代值計算即可.【詳解】因?yàn)?,,則,即,則,故,又,即,解得.故選:B.7、C【解析】根據(jù)文化知識,分別求出相對應(yīng)的頻率,即可判斷出結(jié)果【詳解】設(shè)“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點(diǎn)睛】本題考查等比數(shù)列的定義,考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題8、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結(jié)合方程有實(shí)數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實(shí)數(shù)根,當(dāng)a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當(dāng)a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點(diǎn)睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎(chǔ)題.9、D【解析】由等比數(shù)列的性質(zhì)直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質(zhì)可得:由,解得:;由可得:,所以.故選:D10、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C11、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D12、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點(diǎn)的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得,則,故中點(diǎn)為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點(diǎn)睛】方法點(diǎn)睛:解答圓和圓的位置關(guān)系時,要注意利用平面幾何圓的知識來分析解答.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.點(diǎn)或點(diǎn)(填出其中一組即可)【解析】(1)以向量,,為基底分別表達(dá)出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點(diǎn)或點(diǎn)14、【解析】以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,2,,,1,,,,設(shè)異面直線與所成角為,,異面直線與所成角為.故答案為:.15、【解析】設(shè),表示出,,根據(jù)即可得到方程組,解得、、,即可求出的坐標(biāo),即可得到的坐標(biāo),最后根據(jù)向量模的坐標(biāo)表示計算可得;【詳解】解:設(shè),所以,,因?yàn)?,所以,所以,解得,即,所以,所以;故答案為?6、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實(shí)數(shù)a的取值范圍為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,且【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設(shè)是的中點(diǎn),連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,,設(shè)平面的法向量為,則,故可設(shè).,且平面,所以平面.【小問2詳解】,設(shè),則,,,設(shè)直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.18、(1)(2)【解析】(1)由得,,再由,可得的軌跡方程;(2)設(shè)四邊形的面積為,,設(shè)直線的方程為,代入橢圓方程,利用韋達(dá)定理代入,整理后再利用函數(shù)單調(diào)性可得答案.【小問1詳解】(1)圓的圓心為,因?yàn)?,所以,因?yàn)椋裕?,且,,所以的軌跡方程為.【小問2詳解】設(shè)四邊形面積為,則,可設(shè)直線的方程為,代入橢圓方程化簡得,>0恒成立.設(shè),則,=,令,則,在上單調(diào)遞增,,即四邊形面積的取值范圍.19、(1);(2)證明見解析,10.【解析】(1)設(shè)出等比數(shù)列的公比q,利用給定條件列出方程求出q值即得;(2)將給定等式變形成,再推理計算即可作答.【詳解】(1)設(shè)等比數(shù)列的公比為q,依題意,,而,解得,所以數(shù)列的通項(xiàng)公式為;(2)顯然,,由得:,所以數(shù)列是以為首項(xiàng),公差為-1的等差數(shù)列,其通項(xiàng)為,于是得,由得,而,則數(shù)列前4項(xiàng)都為非負(fù)數(shù),從第5項(xiàng)起都是負(fù)數(shù),又,因此數(shù)列前4項(xiàng)和與前3項(xiàng)和相等并且最大,其值為,所以數(shù)列前項(xiàng)和的最大值是10.20、(1)(2)【解析】(1)由等差數(shù)列的性質(zhì)結(jié)合內(nèi)角和定理得出A的大??;(2)先由余弦定理,結(jié)合,,得到的關(guān)系式,再由的面積為,得到的關(guān)系式,兩式聯(lián)立可求出,進(jìn)而可確定結(jié)果.【小問1詳解】因?yàn)锽,A,C成等差數(shù)列,所以,所以.【小問2詳解】因?yàn)椋?,由余弦定理可得:;又的面積為,所以,所以,所以,所以周長為.21、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,證明兩兩垂直,如圖建系,求出的坐標(biāo)以及平面的一個法向量,證明結(jié)合面,即可求證;(2)求出的坐標(biāo)以及平面的法向量,根據(jù)空間向量夾角公式計算即可求解.【小問1詳解】如圖:取的中點(diǎn),連接,,因?yàn)槭沁呴L為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因?yàn)槊婷妫婷?,,面,所以平面,因?yàn)槊?,所?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國彈性丙烯酸乳液市場調(diào)查研究報告
- 2024年中國不銹鐵板市場調(diào)查研究報告
- 北京舞蹈學(xué)院《新材料與先進(jìn)加技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年雙簧針咀鉗項(xiàng)目可行性研究報告
- 2025至2030年中國自行式橋梁檢測作業(yè)車行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國竹纖維針織內(nèi)衣行業(yè)投資前景及策略咨詢研究報告
- 自動化課課程設(shè)計題目
- 磁盤調(diào)度算法課程設(shè)計
- 2025版車間生產(chǎn)智能化物流系統(tǒng)承包運(yùn)營合同3篇
- 住宅房屋出租合同樣本簡單版
- 2023年小學(xué)五年級下冊英語期末試卷分析,菁選3篇
- DL-T 2231-2021 油紙絕緣電力設(shè)備頻域介電譜測試導(dǎo)則
- 員工月度績效考核管理辦法
- 2023年云南保山電力股份有限公司招聘筆試題庫及答案解析
- GB/T 41904-2022信息技術(shù)自動化基礎(chǔ)設(shè)施管理(AIM)系統(tǒng)要求、數(shù)據(jù)交換及應(yīng)用
- GB/T 41908-2022人類糞便樣本采集與處理
- GB/T 3745.1-1983卡套式三通管接頭
- 信息系統(tǒng)運(yùn)維服務(wù)方案
- 簡支梁、懸臂梁撓度計算程序(自動版)
- 統(tǒng)編版小學(xué)四年級語文上冊五六單元測試卷(附答案)
- 商票保貼協(xié)議
評論
0/150
提交評論