版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省太原市小店區(qū)一中2025屆數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓=1的離心率為,則k的值為()A.4 B.C.4或 D.4或2.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件3.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.4.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.5.若直線與互相平行,且過點,則直線的方程為()A. B.C. D.6.已知實數(shù),滿足不等式組,則的最小值為()A2 B.3C.4 D.57.函數(shù)在定義域上是增函數(shù),則實數(shù)m的取值范圍為()A. B.C. D.8.設(shè)函數(shù)的圖象在點處的切線為,則與坐標軸圍成的三角形面積的最小值為()A. B.C. D.9.圓的圓心坐標與半徑分別是()A. B.C. D.10.函數(shù)的圖象的大致形狀是()A. B.C. D.11.某校開學“迎新”活動中要把3名男生,2名女生安排在5個崗位,每人安排一個崗位,每個崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.3612.數(shù)列滿足,對任意,都有,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓錐的母線長為cm,其側(cè)面展開圖是一個半圓,則底面圓的半徑為____cm.14.已知數(shù)列滿足,定義使()為整數(shù)的k叫做“幸福數(shù)”,則區(qū)間內(nèi)所有“幸福數(shù)”的和為_____15.在空間直角坐標系中,已知向量,則在軸上的投影向量為________.16.如圖三角形數(shù)陣:132456109871112131415……按照自上而下,自左而右的順序,位于第行的第列,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,為的中點.(1)求證:平面;(2)若點在棱上,且,求點到平面的距離.18.(12分)在等差數(shù)列中,,.(1)求的通項公式;(2)求數(shù)列的前項和.19.(12分)如圖,在三棱柱中,點在底面內(nèi)的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小20.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.21.(12分)年月初,浙江杭州、寧波、紹興三地相繼爆發(fā)新冠肺炎疫情.疫情期間口罩需求量大增,某醫(yī)療器械公司開始生產(chǎn)口罩,并且對所生產(chǎn)口罩的質(zhì)量按指標測試分數(shù)進行劃分,其中分數(shù)不小于的為合格品,否則為不合格品,現(xiàn)隨機抽取件口罩進行檢測,其結(jié)果如表:測試分數(shù)數(shù)量(1)根據(jù)表中數(shù)據(jù),估計該公司生產(chǎn)口罩的不合格率;(2)若用分層抽樣的方式按是否合格從所生產(chǎn)口罩中抽取件,再從這件口罩中隨機抽取件,求這件口罩全是合格品的概率22.(10分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)焦點所在坐標軸進行分類討論,由此求得的值.【詳解】當焦點在軸上時,,且.當焦點在軸上時,且.故選:C2、C【解析】根據(jù)充要條件的定義進行判斷【詳解】解:因為函數(shù)為增函數(shù),由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C3、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.4、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D5、D【解析】由題意設(shè)直線的方程為,然后將點代入直線中,可求出的值,從而可得直線的方程【詳解】因為直線與互相平行,所以設(shè)直線的方程為,因為直線過點,所以,得,所以直線的方程為,故選:D6、B【解析】畫出可行域,找到最優(yōu)解,得最值.【詳解】畫出不等式組對應(yīng)的可行域如下:平行移動直線,當直線過點時,.故選:B.7、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A8、C【解析】利用導(dǎo)數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標軸圍成的三角形面積,利用導(dǎo)數(shù)研究在上的最值即可得結(jié)果.【詳解】由題設(shè),,則,又,所以切線為,當時,當時,又,所以與坐標軸圍成的三角形面積為,則,當時,當時,所以在上遞減,在上遞增,即.故選:C9、C【解析】將圓的一般方程化為標準方程,即可得答案.【詳解】由題可知,圓的標準方程為,所以圓心為,半徑為3,故選.10、B【解析】對A,根據(jù)當時,的值即可判斷;對B,根據(jù)函數(shù)在上的單調(diào)性即可判斷;對C,根據(jù)函數(shù)的奇偶性即可判斷;對D,根據(jù)函數(shù)在上的單調(diào)性即可判斷.【詳解】解:對A,當時,,故A錯誤;對B,的定義域為,且,故為奇函數(shù);,當時,當時,,即,又,,故存在,故在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,故B正確;對C,為奇函數(shù),故C錯誤;對D,函數(shù)在上不單調(diào),故D錯誤.故選:B.11、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A12、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于常考題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可知圓錐側(cè)面展開圖的半圓的半徑為cm,再根據(jù)底面圓的周長等于側(cè)面的弧長,即可求出結(jié)果.【詳解】設(shè)底面圓的半徑為,由于側(cè)面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.14、2036【解析】先用換底公式化簡之后,將表示出來,找出滿足條件的“幸福數(shù)”,然后求和即可.【詳解】當時,,所以,若滿足正整數(shù),則,即,所以在內(nèi)的所有“幸福數(shù)”的和為:,故答案為:2036.15、【解析】根據(jù)向量坐標意義及投影的定義得解.【詳解】因為向量,所以在軸上的投影向量為.故答案為:16、【解析】由題意可知到第行結(jié)束一共有個數(shù)字,由此可知在第行;又由圖可知,奇數(shù)行從左到右是從小到大排列,偶數(shù)行從左到右是從大到小排列,第行個數(shù)字從大到小排列,由此可知在到數(shù)第列,據(jù)此即可求出,進而求出結(jié)果.【詳解】由圖可知,第1行有1個數(shù)字,第2行有2個數(shù)字,第2行有3個數(shù)字,……第行有個數(shù)字,由此規(guī)律可知,到第行結(jié)束一共有個數(shù)字;又當時,,所以第行結(jié)束一共有個數(shù)字;當時,,所以在第行,故;由圖可知,奇數(shù)行從左到右是從小到大排列,偶數(shù)行從左到右是從大到小排列,第行是偶數(shù)行,共個數(shù)字,從大到小排列,所以在倒數(shù)第列,所以,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(jù)(1)得,進而根據(jù)幾何關(guān)系,利用等體積法求解即可.【詳解】解:(1)連接,∵,是中點,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點在棱上,且,,為的中點.∴,∴由余弦定理得,即,∴,由(1)平面,設(shè)點到平面的距離為∴,即,解得:所以點到平面的距離為.18、(1)(2)【解析】(1)設(shè)的公差為,根據(jù)題意列出關(guān)于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項公式,即可求出結(jié)果.(2)對數(shù)列中項的正負情況進行討論,再結(jié)合等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:設(shè)的公差為d,因為,,所以解得故.【小問2詳解】解:設(shè)的前項和為,則.當時,,所以所以;當時,.所以.19、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建立空間直角坐標系,用向量法求二面角的平面角.【小問1詳解】因為點在底面內(nèi)的射影恰好是點,所以面.因為面,所以.因為是的中點,且滿足.所以,所以.因為,所以,即,所以.因為,面,面,所以平面.【小問2詳解】∵面,∴直線與底面所成角為,即.因為,所以由(1)知,,因,所以,.如圖示,以C為原點,為x、y、z軸正方向建立空間直角坐標系.則,,,,所以,設(shè),由得,,即.則.設(shè)平面BDC1的一個法向量為,則,不妨令,則.因為面,所以面的一個法向量為記二面角的平面角為,由圖知,為銳角.所以,即.所以二面角的大小為.20、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標式坐標化可得與無關(guān),可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設(shè)存在滿足條件的點,直線,有,,設(shè),有,,,,當時,為定值,所以.21、(1);(2).【解析】(1)由題意知分數(shù)小于的產(chǎn)品為不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分層抽樣確定抽取的件口罩中合格產(chǎn)品和不合格產(chǎn)品的數(shù)量分別為件和件,再利用古典概型把所有基本事件種都列舉出來,在判斷件口罩全是合格品的事件有種情況,即可得到答案.【小問1詳解】在抽取的件產(chǎn)品中,不合格的口罩有(件)所以口罩為不合格品的頻率為,根據(jù)頻率可估計該公司所生產(chǎn)口罩的不合格率為【小問2詳解】由題意所抽取件口罩中不合格的件,合格的件設(shè)件合格口罩記為,件不合格口罩記為而從件口罩中抽取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心理咨詢師助理意向書合同
- 墊資施工合同防腐蝕工程
- 地下垃圾處理打井施工合同樣本
- 汽車專賣店廣告牌租賃合同范本
- 地下停車場班組施工合同
- 離婚協(xié)議書中情感調(diào)適調(diào)整
- 出納臨時聘用協(xié)議兼職
- 教育機構(gòu)貨車司機聘用協(xié)議
- 鄉(xiāng)村餐飲店會計崗位聘用協(xié)議
- 房屋買賣改造合同范例
- 2024北京海淀初一(上)期末語文試卷及答案
- 九年級安全班會課件
- 《預(yù)防性侵安全教育》主題班會教案
- 礦山環(huán)境保護管理制度模版(3篇)
- 《一年級樂考方案》
- 綜合服務(wù)中心施工組織設(shè)計
- 學前兒童衛(wèi)生與保健-期末大作業(yè):案例分析-國開-參考資料
- 客運公司企業(yè)年度安全培訓計劃
- 濱州電動伸縮雨棚施工方案
- ISO45001管理體系培訓課件
- 醫(yī)院消防系統(tǒng)維護保養(yǎng)服務(wù)投標方案(圖文版)(技術(shù)方案)
評論
0/150
提交評論