湖北省孝感市八所重點高中教學協(xié)作體2025屆數(shù)學高二上期末綜合測試模擬試題含解析_第1頁
湖北省孝感市八所重點高中教學協(xié)作體2025屆數(shù)學高二上期末綜合測試模擬試題含解析_第2頁
湖北省孝感市八所重點高中教學協(xié)作體2025屆數(shù)學高二上期末綜合測試模擬試題含解析_第3頁
湖北省孝感市八所重點高中教學協(xié)作體2025屆數(shù)學高二上期末綜合測試模擬試題含解析_第4頁
湖北省孝感市八所重點高中教學協(xié)作體2025屆數(shù)學高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省孝感市八所重點高中教學協(xié)作體2025屆數(shù)學高二上期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是橢圓的左右焦點,橢圓上存在不同兩點使得,則橢圓的離心率的取值范圍是()A. B.C. D.2.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結果為()A. B.C. D.3.在數(shù)列中,,則()A. B.C.2 D.14.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學生的幾個重要的研學旅行地.某中學在校學生人,學校團委為了了解本校學生到上述紅色基地研學旅行的情況,隨機調查了名學生,其中到過中共一大會址或井岡山研學旅行的共有人,到過井岡山研學旅行的人,到過中共一大會址并且到過井岡山研學旅行的恰有人,根據(jù)這項調查,估計該學校到過中共一大會址研學旅行的學生大約有()人A. B.C. D.5.已知拋物線:的焦點為,為上一點且在第一象限,以為圓心,為半徑的圓交的準線于,兩點,且,,三點共線,則()A.2 B.4C.6 D.86.在中,,,,則此三角形()A.無解 B.一解C.兩解 D.解的個數(shù)不確定7.已知公比不為1的等比數(shù)列,其前n項和為,,則()A.2 B.4C.5 D.258.設函數(shù)是定義在上的奇函數(shù),且,當時,有恒成立.則不等式的解集為()A. B.C. D.9.若,則下列正確的是()A. B.C. D.10.已知直線過點且與直線平行,則直線方程為()A. B.C. D.11.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.12.關于實數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.14.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________15.若方程表示的曲線是雙曲線,則實數(shù)m的取值范圍是___;該雙曲線的焦距是___16.為和的等差中項,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點M(5,m)到焦點F的距離為6.(1)求拋物線C的方程;(2)過點作直線l交拋物線C于A,B兩點,且點P是線段AB的中點,求直線l方程.18.(12分)已知數(shù)列滿足,數(shù)列為等差數(shù)列,,前4項和.(1)求數(shù)列,的通項公式;(2)求和:.19.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關于軸對稱時的面積是否達到最大?并說明理由.20.(12分)已知.(1)討論的單調性;(2)當有最大值,且最大值大于時,求取值范圍.21.(12分)已知橢圓的左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程22.(10分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先設點,利用向量關系得到兩點坐標之間的關系,再結合點在橢圓上,代入方程,消去即得,根據(jù)題意,構建的齊次式,解不等式即得結果.【詳解】設,由得,,,即,由在橢圓上,故,即,消去得,,根據(jù)橢圓上點滿足,又兩點不同,可知,整理得,故,故.故選:C.【點睛】關鍵點點睛:圓錐曲線中離心率的計算,關鍵是根據(jù)題中條件,結合曲線性質,找到一組等量關系(齊次式),進而求解離心率或范圍.2、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C3、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.4、B【解析】作出韋恩圖,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,根據(jù)題意求出的值,由此可得出該學校到過中共一大會址研學旅行的學生人數(shù).【詳解】如下圖所示,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,由題意可得,解的,因此,該學校到過中共一大會址研學旅行的學生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎題.5、B【解析】根據(jù),,三點共線,結合點到準線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點共線,∴是圓的直徑,∴,軸,又為的中點,且點到準線的距離為2,∴,由拋物線的定義可得,故選:B.6、C【解析】利用正弦定理求出的值,再根據(jù)所求值及a與b的大小關系即可判斷作答.【詳解】在中,,,,由正弦定理得,而為銳角,且,則或,所以有兩解故選:C7、B【解析】設等比數(shù)列的公比為,根據(jù)求得,從而可得出答案.【詳解】解:設等比數(shù)列的公比為,則,所以,則.故選:B.8、B【解析】根據(jù)當時,可知在上單調遞減,結合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結果.【詳解】,當時,,在上單調遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調性和奇偶性求解函數(shù)不等式的問題,關鍵是能夠通過構造函數(shù)的方式,確定所構造函數(shù)的單調性和奇偶性,進而根據(jù)零點確定不等式的解集.9、D【解析】根據(jù)不等式性質并結合反例,即可判斷命題真假.【詳解】對于選項A:若,則,由題意,,不妨令,,則此時,這與結論矛盾,故A錯誤;對于選項B:當時,若,則,故B錯誤;對于選項C:由,不妨令,,則此時,故C錯誤;對于選項D:由不等式性質,可知D正確.故選:D.10、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.11、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法12、B【解析】根據(jù)給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實數(shù),若,顯然都可以為負數(shù)或者0,此時a,b,c無對數(shù),D不正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】根據(jù)給定條件設出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內,設,,由兩式相減得:,而,于是得,即,所以.故答案為:14、【解析】先求出直線所過的定點,當該定點為弦的中點時弦長最短,利用點斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.15、①.②.2【解析】由題意可得,由此可解得m的范圍,進一步將方程化為標準方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當時,方程可變?yōu)椋海藭r雙曲線焦距為,當時,m不存在,不合題意;故雙曲線的焦距:故答案為:;16、【解析】利用等差中項的定義可求得結果.【詳解】由等差中項的定義可得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫出拋物線方程.(2)由題意設,聯(lián)立拋物線方程,結合韋達定理、中點坐標求參數(shù)k,即可得直線l方程【小問1詳解】由題設,拋物線準線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設,直線l的斜率存在且不為0,設聯(lián)立方程,得,整理得,則.又P是線段AB的中點,∴,即故l18、(1),;(2).【解析】(1)根據(jù)等比數(shù)列的定義,結合等差數(shù)列的基本量,即可容易求得數(shù)列,的通項公式;(2)根據(jù)(1)中所求,構造數(shù)列,證明其為等比數(shù)列,利用等比數(shù)列的前項和即可求得結果.【小問1詳解】因為數(shù)列滿足,故可得數(shù)列為等比數(shù)列,且公比,則;數(shù)列為等差數(shù)列,,前4項和,設其公差為,故可得,解得,則;綜上所述,,.【小問2詳解】由(1)可知:,,故,又,又,則是首項1,公比為的等比數(shù)列;則.19、(1);(2);(3)當點與點關于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關于軸對稱,因此,當點與點關于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調性或三角函數(shù)的有界性等求最值20、(1)時,在是單調遞增;時,在單調遞增,在單調遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當時在無最大值,當時最大值為因此.令,則在是增函數(shù),當時,,當時,因此a的取值范圍是.試題解析:(Ⅰ)的定義域為,,若,則,在是單調遞增;若,則當時,當時,所以在單調遞增,在單調遞減.(Ⅱ)由(Ⅰ)知當時在無最大值,當時在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當時,,當時,因此a取值范圍是.考點:本題主要考查導數(shù)在研究函數(shù)性質方面的應用及分類討論思想.21、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論